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Abstract. Linked Data comprises of an unprecedented volume of struc-
tured data on the Web and is adopted from an increasing number of
domains. However, the varying quality of published data forms a bar-
rier for further adoption, especially for Linked Data consumers. In this
paper, we extend a previously developed methodology of Linked Data
quality assessment, which is inspired by test-driven software development.
Specifically, we enrich it with ontological support and different levels of
result reporting and describe how the method is applied in the Natural
Language Processing (NLP) area. NLP is – compared to other domains,
such as biology – a late Linked Data adopter. However, it has seen a
steep rise of activity in the creation of data and ontologies. NLP data
quality assessment has become an important need for NLP datasets. In
our study, we analysed 11 datasets using the lemon and NIF vocabularies
in 277 test cases and point out common quality issues.
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1 Introduction

Linked Data (LD) comprises of an unprecedented volume of structured data
on the Web and is adopted from an increasing number of domains. However,
the varying quality of the published data forms a barrier in further adoption,
especially for Linked Data consumers.

Natural Language Processing (NLP) is – compared to other domains, such
as Biology – a late LD adopter with a steep rise of activity in the creation of
vocabularies, ontologies and data publishing. A plethora of workshops and confer-
ences such as LDL http://ldl2014.org/, WoLE http://wole2013.eurecom.fr, LREC http:

//lrec2014.lrec-conf.org, MLODE http://sabre2012.infai.org/mlode, NLP&DBpedia http:

//nlp-dbpedia2013.blogs.aksw.org/program/) motivate researchers to adopt Linked Data
and RDF/OWL and convert traditional data formats such as XML and rela-
tional databases. Although guidelines and best practices for this conversion exist,
developers from NLP are often unfamiliar with them, resulting in low quality
and inoperable data. In this paper, we address the subsequently arising need for
data quality assessment of those NLP datasets.

http://aksw.org
http://ldl2014.org/
http://wole2013.eurecom.fr
http://lrec2014.lrec-conf.org
http://lrec2014.lrec-conf.org
http://sabre2012.infai.org/mlode
http://nlp-dbpedia2013.blogs.aksw.org/program/
http://nlp-dbpedia2013.blogs.aksw.org/program/
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Fig. 1. Flowchart showing the test-driven data quality methodology. The left part
displays the input sources of our pattern library. In the middle part the different ways
of pattern instantiation are shown which lead to the Data Quality Test Cases on the
right.

We extended a recently introduced test-driven data quality methodology [12]
inspired by tests in software engineering. In its introduction, the methodology
in [12] focused on two approaches: (1) automatically-generated test cases which
were derived from the OWL/RDFS schema of the ontologies and (2) test cases
adhering to patterns from a pattern library. These two approaches were evaluated
on popular ontologies and data sets such as FOAF or the DBpedia Ontology and
it was shown that the methodology is well suited for horizontal, multi-domain
data quality assessment, i.e. massive detection of errors for five large-scale LOD
data sets as well as on 291 vocabularies, independent of their domain or their
purpose. In this paper, we will briefly introduce the methodology in Section 2
including a comparison of our methodology to OWL reasoning. The Test Driven
Data Engineering Ontology is described in Section 3. Using the ontology, we can
annotate test cases and provide support for different levels of result reporting
allowing to give feedback to developers when running these tests and ultimately
improving data quality.

Additionally, we show progress in implementing domain-specific validation
by quickly improving existing validation provided by ontology maintainers. We
specifically analysed datasets for two emerging domain ontologies, the lemon
model [13] and the NIF 2.0 Core Ontology [10] in Section 4 and evaluated 11
datasets in Section 5.

2 Overview of Test-Driven Data Assessment Methodology

In this section we introduce basic notions of our methodology. A thorough
description of test-driven quality assessment methodology can be found in [12]

Data Quality Test Pattern (DQTP). A data quality test pattern is a
SPARQL query template with variable placeholders. Possible types of the pattern
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variables are IRIs, literals, operators, datatype values (e.g. integers) and regular
expressions. Using %%v%% as syntax for placeholders, an example DQTP is:

1 SELECT ?s WHERE { ?s %%P1%% ?v1. ?s %%P2%% ?v2 .
2 FILTER ( ?v1 %%OP%% ?v2 ) }

This DQTP can be used for testing whether a value comparison of two
properties P1 and P2 holds with respect to an operator OP . DQTPs represent
abstract patterns, which can be further refined into concrete data quality test
cases using test pattern bindings.

Test Pattern Binding. Test pattern bindings are valid DQTP variable
replacements.

Data Quality Test Case. Applying a pattern binding to a DQTP results
in an executable SPARQL query. Each result of the query is considered to be
a violation of a test case. A test case may have four different results: success
(empty result), violation (results are returned), timeout (test is marked for further
inspection) and error (something prevented the query execution). An example
test pattern binding and resulting data quality test case is3:

1 P1 => dbo:birthDate | SELECT ?s WHERE {
2 P2 => dbo:deathDate | ?s dbo:birthDate ?v1.
3 OP => > | ?s dbo:deathDate ?v2.
4 | FILTER ( ?v1 > ?v2 ) }

Test Auto Generator (TAG). A Test Auto Generator reuses the RDFS
and OWL modelling of a knowledge base to verify data quality. In particular, a
TAG, based on a DQTP, takes a schema as input and returns test cases. TAGs
consist of a detection and an execution part. The detection part is a query against
a schema and for every result of a detection query, a test case is instantiated
from the respective pattern, for instance:

1 # TAG | # TQDP
2 SELECT DISTINCT ?P1 ?P2 | SELECT DISTINCT
3 WHERE { | ?s WHERE {
4 ?P1 owl:propertyDisjointWith ?P2.| ?s %%P1%% ?v.
5 } | ?s %%P2%% ?v.}

Additionally, we devise the notion of RDF test case coverage based on a
combination of six individual coverage metrics [12].

The test-driven data quality methodology is illustrated in Figure 1. As shown
in the figure, there are two major sources for the creation of tests. One source is
stakeholder feedback from everyone involved in the usage of a dataset and the
other source is the already existing RDFS/OWL schema of a dataset. Based on this,
there are several ways to create tests:

1. Manually create test cases: Test cases specific to a certain dataset or schema
can be written manually. This can be guided choosing suitable DQTPs of

3 We use http://prefix.cc to resolve all name spaces and prefixes. A full list can be
found at http://prefix.cc/popular/all

http://prefix.cc
http://prefix.cc/popular/all
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our pattern library. Tests that refer to the schema of a common vocabulary
can become part of a central library to facilitate later reuse.

2. Reusing tests based on common vocabularies: Naturally, a major goal in the
Semantic Web is to reuse existing vocabularies instead of creating new ones.
We detect the used vocabularies in a dataset, which allows to re-use tests
from a test pattern library.

3. Using RDFS/OWL constraints directly: As previously explained, tests can be
automatically created via TAGs in this case.

4. Enriching the RDFS/OWL constraints: Since many datasets provide only limited
schema information, we perform automatic schema enrichment as recently
researched in [4]. Those schema enrichment methods can take an RDF dataset
or a SPARQL endpoint as input and automatically suggest schema axioms
with a certain confidence value by analysing the dataset. In our methodology,
this is used to create further tests via TAGs.

The RDFUnit Suite 4 5 implements the test driven data assessment method-
ology The methodology is implemented in a Java component and released as
open source under the Apache licence.

Relation Between SPARQL Test Cases and OWL Reasoning. SPARQL
test cases can detect a subset of common validation errors detectable by a sound
and complete OWL reasoner. However, this is limited by a) the reasoning support
offered by the used SPARQL endpoint and b) the limitations of the OWL-to-
SPARQL translation. On the other hand, SPARQL test cases can find validation
errors that are not expressible in OWL, but within the expressivity of SPARQL
(see [1] for more details and a proof that SPARQL 1.0 has the same expressive
power as relational algebra under bag semantics). This includes aggregates, prop-
erty paths, filter expressions etc. Please note that for scalability reasons full OWL
reasoning is often not feasible on large datasets. Furthermore, many datasets
are already deployed and easy to access via SPARQL endpoints. Additionally,
the Data Quality Test Pattern (DQTP) library may arguably provide a more
user friendly approach for building validation rules compared to modelling OWL

axioms. However, the predefined DQTP library has some limitations as well, in
particular a) it requires familiarity with the library in order to choose the correct
DQTP and 2) custom validations cannot always correspond to an existing DQTP
and manual SPARQL test cases are required.

3 Test Driven Data Engineering Ontology

The Test Driven Data Assessment methodology is implemented using RDF as
input and output and complies with our accompanied ontology.6 The ontology
additionally serves as a self-validation layer for the application input (test-cases,
DQTPs and TAGs) and output (validation results). The ontology consists of 20

4
https://github.com/AKSW/RDFUnit

5
http://RDFUnit.aksw.org

6
http://RDFUnit.aksw.org/ns/core#

https://github.com/AKSW/RDFUnit
http://RDFUnit.aksw.org
http://RDFUnit.aksw.org/ns/core#
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Fig. 2. Class dependencies for the test driven data engineering ontology.

classes and 36 properties and reuses the PROV [2], RLOG7 and spin8 ontologies.
As depicted in Figure 2, the ontology is centered around two concepts, the test
case definition and generation and the result representation.

7
http://persistence.uni-leipzig.org/nlp2rdf/ontologies/rlog#

8
http://spinrdf.org

http://persistence.uni-leipzig.org/nlp2rdf/ontologies/rlog#
http://spinrdf.org
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Test case definition and generation. We encapsulate a list of test cases
in a TestSuite, a subclass of prov:Collection that enumerates the contained
test cases with prov:hadMember. The class TestCase describes an abstract test
case. For each test case, we provide provenance with the following properties:

– :appliesTo to denote whether the test case applies to a schema, a dataset
or an application.

– :source, the URI of the schema, dataset or application.
– :generated on how the test case was created (automatic or manually).
– :references a list of URIs a test case uses for validation.
– :testCaseLogLevel an rlog:Level this test case is associated with. In

accordance to software development, the available log levels are: TRACE,
DEBUG, INFO, WARN, ERROR and FATAL.

Additionally, each TestCase is associated with two SPARQL queries, a query
for the constraint violations and a query for the prevalence of the violations. The
prevalence query is optional because it cannot be computed in all cases.

1 # Violation Query | # Prevalence Query
2 SELECT DISTINCT ?s WHERE { | select count(distinct ?s) WHERE {
3 ?s dbo:birthDate ?v1. | ?s dbo:birthDate ?v1 .
4 ?s dbo:deathDate ?v2. | ?s dbo:deathDate ?v2 . }
5 FILTER ( ?v1 > ?v2 ) } |

Concrete instantiations of a TestCase are the ManualTestCase and the Pat-
ternBasedTestCase classes. In the former, the tester defines the SPARQL queries
manually while the in the latter she provides Bindings for a Pattern. Additionally,
the ontology allows the definition of dependencies between test cases. For example
if test case A fails, do not execute test case B. This is achieved with the Test-
CaseDependency class where :dependencyFrom and :dependencyTo define the
dependent test cases, :dependencyCondition is the status result that triggers
an execute or don’t execute (:dependencyExecute) for the dependant test case.

A Pattern is identified and described with the dct:identifier and dct:-

description properties. The :sparqlPattern and :sparqlPrevalencePattern

properties hold the respective SPARQL queries with placeholder for replacement.
For each placeholder a PatternParameter is defined and connected to the pattern
with the :parameter property.

PatternParameters are described with a dct:identifier and two restriction
properties: the :parameterConstraint to restrict the type of a parameter to
Operator, Resource, Property or Class and the optional :constraintPattern
for a regular expression constraint on the parameter values.

Bindings link to a PatternParameter and a value through the :parameter and
:bindingValue properties respectively. PatternBasedTestCases are associated
with Bindings through the :binding property.

1 [] a tddo:PatternBasedTestCase ;
2 tddo:binding [ a tddo:Binding ;
3 tddo:bindingValue lemon:Node ;
4 tddo:parameter tddp:OWLDISJC -T1 ] ;
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A PatternBasedTestCase can be automatically instantiated through a TestAu-
toGenerator. Generators hold a dct:description, a sparql query (:generator-
Sparql) and a link to a pattern (:basedOnPattern).

Result representation. For the result representation we reuse the PROV
Ontology. The TestExecution class is a subclass of prov:Activity that executes a
TestSuite (prov:used) against a :source and generates a number of TestCaseRe-
sults. Additional properties of the TestExecution class are prov:startedAtTime

and prov:endedAtTime as well as aggregated execution statistics like: :testsRun,
:testsSucceeded, :testsFailed, :testsTimeout, :testsError and :total-

IndividualErrors.

The ontology supports four levels or result reporting, two for report on the test
case level and two for individual error reporting. All result types are subclasses
of the TestCaseResult class and for provenance we link to a TestCase with
:testCase and a TestExecution with prov:wasGeneratedBy properties. The
StatusTestCaseResult class contains a single :resultStatus that can be one of
Success, Fail, Timeout and Error. The AggregatedTestCaseResult class adds up to
the StatusTestCaseResult class by providing an aggregated view on the individual
errors of a test case with the properties :resultCount and :resultPrevalence.

For the individual error reporting the RLOGTestCaseResult generates log-
ging messages through the RLog ontology. For every violation, we report the
erroneous resource (rlog:resource), a message (rlog:message) and a logging
level (rlog:level). The logging level is retrieved from the TestCase.

The ExtendedTestCaseResult class extends RLOGTestCaseResult by providing
additional properties for error debugging by reusing the spin ontology. In detail,
an ExtendedTestCaseResult is a subclass of spin:ConstraintViolation and
may have the following properties:

– spin:violationRoot: the erroneous resource.
– spin:violationPath: the property of the resource that the error occurs.
– :errorPropertyContext: lists additional properties that may provide a

better context for fixing the error. For example, in the dbo:birthDate before
a dbo:deathDate case, dbo:birthDate can be the spin:violationPath and
dbo:deathDate the :errorPropertyContext.

– :errorClassification: is a sub-property of dct:subject that points to a
SKOS error classification category.

– :errorSource: is a sub-property of dct:subject that points to a SKOS
error source category. Example values can be data parsing, data publishing,
mapping, pre processing, post processing, etc.

– :errorType: is a sub-property of dct:subject and that points to a SKOS
error type category on the triple level. Example values can be: missing
property, redundant property, inaccurate property.

The extended error annotation is generated through the ResultAnnotation
class that is attached to a TestCase through the :resultAnnotation property.
A ResultAnnotation must contain an :annotationProperty linking to one of
the allowed ExtendedTestCaseResult properties and an appropriate value for
:annotationValue. For the schema-based automatic test case generation some
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Total Domain Range Datatype Card. Disj. Func. I. Func.

Lemon 172 40 34 1 29 64 3 1

NIF 86 42 24 4 6 10
Table 1. Number of automatically generated test cases per ontology. We provide the
total number of test cases as well as separated per rdfs domain and range, literal
datatype, OWL cardinality (min, max, exact), property & class disjointness, functional
and inverse functional constraints.

of the annotation may be known only on the Pattern level and other on the
TestAutoGenerator level. Thus, ResultAnnotations are allowed in both classes
and the error annotation are added up on the test case generation.

Finally, we provide :testSuite, an ontology annotation property, that links
an ontology to an appropriate TestSuite for data validation purposes.

1 <http :// example.com/ontology#>
2 a owl:Ontology ;
3 tddo:testCase <http :// example.com/testCase > .

4 Test Case Implementation for Linguistic Ontologies

In this section, we will discuss the employment of RDFUnit for lemon and
NIF, especially with regard to these questions: (1) What is the coverage of the
automatically generated tests, what are their limitations. (2) Where is it feasible
to use the predefined patterns from the pattern library [12]? Are there test cases
that are too complex and need manual creation by an expert? (3) Which test
cases can not be expressed at all as they are not expressible via SPARQL?

By running the existing RDFUnit Test Auto Generators (TAG) on the lemon
and NIF ontologies we automatically generated 172 test cases for lemon and 86
test cases for NIF (cf. Table 1). Both ontologies are of similar size: NIF contains 19
classes and 46 properties while lemon 23 classes and 55 properties. The number of
increased test cases in lemon results from the higher amount of defined cardinality
and disjointness restrictions. The RDFUnit Suite, at the time of writing, does
not provide full OWL coverage and thus, complex owl:Restrictions cannot
be handled yet. In the frame of the examined ontologies, RDFUnit did not
produce test cases for unions of (owl:unionOf) restrictions such as multiple
cardinalities for lemon:LexicalSense and lemon:LemonElement or restrictions
with owl:allValuesFrom, owl:someValuesFrom and owl:hasSelf for NIF.

Both NIF and lemon have defined semantic constraints that can not be
captured in OWL and are too complex for the above-mentioned pattern library.
In particular, NIF and lemon use natural language text in the rdfs:comment

properties as well as their documentations and specification documents.
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For lemon, the maintainers implemented a Python validator9, which enables
us to directly compare our efforts to a software validator. For NIF there was an
early prototype of RDFUnit that used only manual SPARQL test cases.

4.1 Lemon

According to Table 1, test cases for rdfs:domain and rdfs:range restrictions
are the largest group, at 43.8%, followed by tests for disjointness (37.4%) and
cardinality restrictions (18.8%). The existing lemon validator contains 24 test
cases for some structural criteria of the lemon ontology. 14 of these tests are
natively covered by the existing RDFUnit TAGs. Out of the 10 remaining
cases, four where on warning and info level, based on recommendations from
the ontology’s guidelines. They are thus not explicitly stated in OWL, because
they don’t constitute logical errors and can not be covered by automatic test
generation. Of the six remaining errors, two where expressed via owl:unionOf

and two could not be expressed by the ontology’s author because OWL is not
able to express them. Additionally, the lemon validator reported undeclared
properties under the lemon namespace. Although this test case can be expressed
in SPARQL, it was not implemented at the time of writing.

The last error case not covered was due to an error in the ontology itself. Lemon
defines that every instance of lemon:LexicalEntry may have a maximum of one
lemon:canonicalForm property. Yet, the validator fails if the instance has no
lemon:canonicalForm, thus suggesting that instead of the owl:maxCardinality,
a owl:cardinality restriction was intended in this case. These kind of semantic
subtleties are usually very hard to detect in the complex domain of ontology
engineering. It shows that the intensive engagement necessary to write the test
cases already serves to debug the ontologies underlying the datasets. This extends
the test-driven approach to the ontology development, apart from the quality
assessment.

These test cases could directly be translated into SPARQL queries for testing
with RDFUnit. For example, it is suggested that a lemon:LexicalEntry should
contain an rdfs:label. As there is no possibility to express these optional
constraints in OWL, this test case was added manually to log matching resources
as an info-level notice.

Beyond the implementation of the lemon validator as test cases, some addi-
tional test cases were added to test for semantic correctness or properties that
could be added. For example, the lemon:narrower relation, which denotes that
one sense of a word is narrower than the other, must never be symmetric or
contain cycles.

1 SELECT DISTINCT ?s WHERE {
2 ?s lemon:narrower+ ?narrower .
3 ?narrower lemon:narrower+ ?s . }

9
https://github.com/jmccrae/lemon-model.net/blob/master/validator/lemon-validator.py

https://github.com/jmccrae/lemon-model.net/blob/master/validator/lemon-validator.py
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Similarly, if one resource is lemon:narrower to another resource, the inverse
relationship (lemon:broader) should exist in the database.

From the total of ten manual test cases that were defined for lemon, five were
described as PatternBasedTestCases, using the existing pattern library, and five
as ManualTestCases using custom SPARQL queries. However, for brevity we
described the test case with the final SPARQL queries.

4.2 NIF

Almost 50% of automated NIF test cases were for rdfs:domain constraints, 27%
for rdfs:range, 11% for owl:FunctionalPropery restrictions, 7% for disjoint-
ness and 5% for proper datatype usage. The early prototype of RDFUnit that is
used as the NIF validator did not cover any schema constraints and consists of
10 test cases. There exists one test case on the warning level that reports classes
of the old namespace.

Other manual test cases include the following restrictions:
– An occurrence of nif:beginIndex inside a nif:Context must be equal to

zero (0).
– The length of nif:isString inside a nif:Context must be equal to nif:

endIndex.
– A nif:anchorOf string must match the substring of the nif:isString from

nif:beginIndex to nif:endIndex. For example:

1 SELECT DISTINCT ?s WHERE {
2 ?s nif:anchorOf ?anchorOf ; nif:beginIndex ?beginIndex ;
3 nif:endIndex ?endIndex ;
4 nif:referenceContext [ nif:isString ?referenceString ] .
5 BIND (SUBSTR (? referenceString ,
6 ?beginIndex , (? endIndex - ?beginIndex) ) AS ?test ) .
7 FILTER (str(?test) != str(? anchorOf )) . }

– nif:CString is an abstract class and thus a subclass such as nif:CStringImpl
or nif:RFC5147String must be used.

– All instances of nif:CString that are not nif:Context must have a nif:

referenceContext property.
– All instances of nif:Context must also be instances of a nif:CString

subclass.
– Misspelled rdf:type declarations for class names, for example nif: RFC5147-

String.
– All instances of nif:CString must have the properties nif:beginIndex and

nif:endIndex.
– all nif:Context must have an explicit nif:isString, nif:isString can

only occur with nif:Context.

5 Evaluation

10
http://lemon-model.net/lexica/uby/WktDE/WktEN.nt.gz

http://lemon-model.net/lexica/uby/WktDE/WktEN.nt.gz
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Name Description Ontology Type

lemon datasets

LemonUby
Wiktionary EN 10 [5]

Conversion of the English Wiktionary into
UBY-LMF model

lemon,
UBY-LMF

Dictionary

LemonUby
Wiktionary DE 11 [5]

Conversion of the German Wiktionary into
UBY-LMF model

lemon,
UBY-LMF

Dictionary

LemonUby Wordnet
12 [5]

Conversion of the Princeton WordNet 3.0 into
UBY-LMF model

lemon,
UBY-LMF

WordNet

DBpedia Wiktionary
13 [9]

Conversion of the English Wiktionary into
lemon

lemon Dictionary

QHL 14 [15] Multilingual translation graph from more than
50 lexicons

lemon Dictionary

NIF datasets

Wikilinks15 [10] sample of 60976 randomly selected phrases
linked to Wikipedia articles

NIF NER

DBpedia Spotlight
dataset16 [18]

58 manually NE annotated natural language
sentences

NIF NER

KORE 50 evaluation
dataset17 [18]

50 NE annotated natural language sentences
from the AIDA corpus

NIF NER

News-10018 [16] 100 manually annotated German news articles NIF NER

RSS-50019 [16] 500 manually annotated sentences from 1,457
RSS feeds

NIF NER

Reuters-12820 [16] 128 news articles manually curated NIF NER

Table 2. Tested datasets

For evaluation purposes we gathered a representative sample of lemon and NIF
datasets in Table 2. We loaded all the datasets in an open-source edition of

11
http://lemon-model.net/lexica/uby/WktDE/WktDE.nt.gz

12
http://lemon-model.net/lexica/uby/wn/wn.nt.gz

13
http://downloads.dbpedia.org/wiktionary/dumps/en/wiktionary_en_2013-09-17_dump-20130726.

ttl.bz2
14

http://linked-data.org/datasets/qhl.ttl.zip
15

http://mlode.nlp2rdf.org/datasets/wikilinks-sample.ttl.tar.gz
16

http://www.yovisto.com/labs/ner-benchmarks/data/dbpedia-spotlight-nif.ttl
17

http://www.yovisto.com/labs/ner-benchmarks/data/kore50-nif.ttl
18

https://raw.github.com/AKSW/n3-collection/master/News-100.ttl
19

https://raw.github.com/AKSW/n3-collection/master/RSS-500.ttl
20

https://raw.github.com/AKSW/n3-collection/master/Reuters-128.ttl

http://lemon-model.net/lexica/uby/WktDE/WktDE.nt.gz
http://lemon-model.net/lexica/uby/wn/wn.nt.gz
http://downloads.dbpedia.org/wiktionary/dumps/en/wiktionary_en_2013-09-17_dump-20130726.ttl.bz2
http://downloads.dbpedia.org/wiktionary/dumps/en/wiktionary_en_2013-09-17_dump-20130726.ttl.bz2
http://linked-data.org/datasets/qhl.ttl.zip
http://mlode.nlp2rdf.org/datasets/wikilinks-sample.ttl.tar.gz
http://www.yovisto.com/labs/ner-benchmarks/data/dbpedia-spotlight-nif.ttl
http://www.yovisto.com/labs/ner-benchmarks/data/kore50-nif.ttl
https://raw.github.com/AKSW/n3-collection/master/News-100.ttl
https://raw.github.com/AKSW/n3-collection/master/RSS-500.ttl
https://raw.github.com/AKSW/n3-collection/master/Reuters-128.ttl
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Size SC FL TO ER AErrors MErrors MWarn MInfo

WiktDBp 60M 177 5 - - 3.746.103 7.521.791 - 3.582.837

WktEN 8M 168 14 - - 752.018 394.766 - 633.270

WktDE 2M 170 12 - - 273.109 66.268 - 155.598

Wordnet 4M 166 16 - - 257.228 36 - 257.204

QHL 3M 170 11 - 1 433.118 538.933 - 538.016

Wikilinks 0.6M 91 4 - 1 141.528 21.246 - -

News-100 13K 91 2 - 3 3.510 - - -

RSS-500 10K 91 2 - 3 3.000 - - -

Reuters-128 7K 91 2 - 3 2.016 - - -

Spotlight 3K 92 3 - 1 662 68 - -

KORE50 2K 89 6 - 1 301 55 - -
Table 3. Overview of the NLP datasets test execution. For every dataset, we provide
the size in triples count, the number of test cases that were successful, failed, timed-out
and did not complete due to an error. Additionally, we mention the total the number
of the individual violations from automated test cases along with errors, warnings and
infos from manual test cases.

Virtuoso server (version 7.0)21 and ran RDFUnit for each one of them. The
results of the dataset evaluation are provided in Table 3.

Looking at the results of Table 3 we observe that manual test cases can be
of equal importance to the schema restrictions. Additionally we notice that the
lemon-based datasets were more erroneous than the NIF -based datasets. This
may be attributed to the following reasons:

– the NIF datasets were smaller in size and, thus, better curated.
– the DBpedia Wiktionary datasets is derived from a crowd-sourced source,

which makes it more prone to errors.
– the lemon ontology is stricter than the NIF ontology.
– [16] already used the early prototype of RDFUnit and fixed all data errors

found by manual test cases.

All lemon datasets failed the info level test case that required at least one
and unique lemon:language in a lemon:LexicalEntry. The existence of a
lemon:subsense or exactly one lemon:reference also failed in all datasets
with a high number of violations, except Wordnet that had only 33. Additionally,
all datasets had a high number of violation on the owl:minCardinality of 1
constraint of lemon:lexicalForm on the lemon:LexicalEntry class. However,
all datasets had the appropriate number of lemon:canonicalForm properties,
which is a sub-property of lemon:lexicalForm and invalidates these errors. This
constraint of RDFUnit, stems from the fact that transitive sub-property checking
is not implemented at the time of writing. Except from the DBpedia Wiktionary
dataset, all other lemon datasets had many reports of a lemon:LemonEntry

without a label.
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http://virtuoso.openlinksw.com

http://virtuoso.openlinksw.com


NLP Data Cleansing Based on Linguistic Ontology constraints 13

The DBpedia Wiktionary dataset had only five failed test cases. With an
addition to the previous three, the dataset returned 163K violations due to the
disjointness of the lemon:LexicalEntry class with the lemon:LexicalSense

class constraint and 3.5M violations of missing a required lemon:lexicalForm

property in a lemon:LexicalEntry. The same query returned 270K errors in
the QHL dataset.

The Uby Wiktionaries had many failed test cases with a very low (less than 10)
number of violations except from owl:minCardinality of one in lemon:Form

class for the lemon:representation property. This test case returned 430K
errors on the English version and 200K errors on the German. Wordnet also failed
this test case with 130K violations. Finally, other high in number of violation
test cases are found in the QHL dataset and regard incorrect domain (30K) and
range (68K) of lemon:entry and wrong range of lemon:sense (67K).

The most common test case that failed in all NIF datasets is the incorrect
datatype of nif:beginIndex and nif:endIndex. Both properties are defined
as xsd:nonNegativeInteger but were used as string Literals. This is due to a
recent change of the NIF specification but also showcases the usefulness of our
methodology for data evolution. The correct datatype of nif:beginIndex and
nif:endIndex are also the reason for the NIF test cases that returned an error.
In these cases, substrings based on these properties were calculated on the query
(cf. Section 4.2) and non-numeric values did not allow a proper SPARQL query
evaluation. This case also expresses the need for chained test cases execution
(TestCaseDependency in cf. Section 3). The existence of a nif:beginIndex and
nif:endIndex in a nif:CString also return violation in spotlight (68) kore50 (51)
and Wikilinks (21K) datasets. Finally 21K objects in a nif:wasConvertedFrom

relation did not have nif:String as range.
A direct comparison or our results with the results of the implemented

validators cannot be provided in a consistent way. The NIF validator contained
only 10 test cases while our approach had a total of 96 test cases. The lemon
validator on the other hand could not finish after 48 hours for the DBpedia
Wiktionay dataset and resulted in a multitude of non-RDF logging messages that
were hard to filter and aggregate.

6 Related Work

There exist several approaches for assessing the quality of Linked Data. They can
be broadly classified into (i) automated (e.g. [8]), (ii) semi-automated (e.g. [6])
or (iii) manual (e.g. [3,14]) methodologies. These approaches are useful at the
process level wherein they introduce systematic methodologies to assess the
quality of a dataset. However, the drawbacks include a considerable amount
of user involvement, inability to produce interpretable results, or not allowing
a user the freedom to choose the input dataset. In [11] errors occurring while
publishing RDF data along were detected with a description of effects and means
to improve the quality of structured data on the web. In a recent study, 4 million
RDF/XML documents were analysed which provided insights into the level of
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conformance these documents had in accordance to the Linked Data guidelines.
On the one hand, these efforts contributed towards assessing a vast amount of Web
or RDF/XML data, however, most of the analysis was performed automatically,
therefore overlooking the problems arising due to contextual discrepancies.

The approach described in [7] advocates the use of SPARQL and SPIN for
RDF data quality assessment and shares some similarity with our methodol-
ogy. However, a domain expert is required for the instantiation of test patterns.
SPARQL Inferencing Notation (SPIN) 22 is a W3C submission aiming at repre-
senting rules and constraints on Semantic Web models. SPIN also allows users to
define SPARQL functions and reuse SPARQL queries. The difference between
SPIN and our pattern syntax, is that SPIN functions would not fully support our
Pattern Bindings. SPIN function arguments must have specific constraints on
the argument datatype or argument class and do not support operators, e.g. ‘=’,
‘>’, ‘!’, ‘+’, ‘*’, or property paths.23 However, our approach is still compatible
with SPIN when allowing to initialise templates with specific sets of applicable
operators. In that case, however, the number of templates increases. Due to this
restrictions, with SPIN we can define fewer but more general constraints. One
of the advantages of converting our templates to SPIN is that the structure of
the SPARQL query itself can be stored directly in RDF, which is, however, very
complex and difficult to manage. From the efforts related to SPIN, we re-used
their existing data quality patterns and ontologies for error types.
Pellet Integrity Constraint Validator [17](ICV)24 translates OWL integrity con-
straints into SPARQL queries. Similar to our approach, the execution of those
SPARQL queries indicates violations. An implication of the integrity constraint
semantics of Pellet ICV is that a partial unique names assumption (all resources
are considered to be different unless equality is explicitly stated) and a closed
world assumption is in effect. We use the same strategy as part of our methodol-
ogy, but go beyond it by allowing users to directly (re-)use DQTPs not necessarily
encoded in OWL.

7 Conclusion and Future Work

In this article, we extended a previously introduced methodology for test-driven
quality assessment. In particular, a data engineering ontology was described in
detail. We applied the RDFUnit Suite implementing this methodology to the
NLP domain, an area in which RDF usage is currently rising and there is a need
for quality assessment. In particular, we devised 277 test cases for NLP datasets
using the Lemon and NIF vocabularies.

In future work, we aim to extend the test cases to more NLP ontologies,
such as MARL, NERD and ITSRDF. We also plan to further increase the scope
of the framework, e.g. for the recently changed namespaces of NIF and lemon
deprecation warnings should be produced. Another extension is the modeling of

22 http://www.w3.org/Submission/spin-overview/
23

http://www.w3.org/TR/2010/WD-sparql11-property-paths-20100126/
24

http://clarkparsia.com/pellet/icv/

http://www.w3.org/TR/2010/WD-sparql11-property-paths-20100126/
http://clarkparsia.com/pellet/icv/
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dependencies between test cases, which is currently done manually and could be
automated. Furthermore, we also want to apply our methods on services: Usually,
semantically enriched NLP services use text as input and return annotations in
RDF, which could then be verified by RDFUnit to validate their output.
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