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Abstract—Over the last years, link discovery frameworks have
been employed successfully to create links between knowledge
bases. Consequently, repositories of high-quality link specifica-
tions have been created and made available on the Web. The
basic question underlying this work is the following: Can the
specifications in these repositories be reused to ease the detection
of link specifications between unlinked knowledge bases? In this
paper, we address this question by presenting a formal transfer
learning framework that allows detecting existing specifications
that can be used as templates for specifying links between previ-
ously unlinked knowledge bases. We discuss both the advantages
and the limitations of such an approach for determining link
specifications. We evaluate our approach on a variety of link
specifications from several domains and show that the detection
of accurate link specifications for use as templates can be achieved
with high reliability.

I. INTRODUCTION

Link Discovery has gained significant momentum over the
last years due to the growth of the Linked Data Web and
the use of Semantic Web technologies across manifold appli-
cations including question answering [16], federated query-
ing [13], large-scale inferences [17] and data integration [2].
Over the last years, several tools and libraries have been
developed with the main aim of efficiently supporting the
whole of the link discovery process [3], [15], [12]. In general,
this process can be modeled as consisting of two steps: Once
provided with a source and target set of instances, the first step
consists of discovering a link specification for retrieving high-
quality links. This step is of crucial importance the precision
and recall of the link discovery process depend heavily on the
link specification used. Once a specification has been decided
upon, it has to be carried out. Several frameworks such as
LIMES [7] and SILK [4] have been developed to address the
quadratic runtime of link discovery. With the ongoing growth
of the Linked Data Web, these tools and libraries have been
employed successfully to create links between the different
knowledge bases on the Linked Data Web. Consequently,
different repositories of high-quality link specifications have
been created and made publicly available on the Web. For
example, the LATC project1 generated 170 specifications for
linking knowledge bases across several domains including
persons, organizations and geo-spatial entities.

The basic observation underlying this paper is the following:
While several approaches for learning link specifications have

1http://latc-project.eu

been developed over the past years (e.g., [9], [10]), the discov-
ery of a specification to link two datasets has been regarded
as an isolated process. Hence, to the best of our knowledge,
none of the previous approaches to detecting link specifications
has made use of the already available knowledge available in
repositories for link specifications. The primary aim of this
paper is consequently to explore how this knowledge can
be reused within the framework of transfer learning. More
specifically, our goal is to present a formal framework for
the transfer learning of link specifications with the aim of
improving the computation of link specifications.

The rest of this paper is structured as follows: We first
begin by presenting formally the problem of link specification
and the idea that underlie transfer learning. Thereafter, we
present a formal framework that combines both ideas and
allows implementing transfer learning for link specifications.
We then present the heuristics we implemented. Finally, we
conclude with an overview of possibilities that arise in this
novel field of research. Note that throughout this paper, we use
RDF prefixes as available at http://prefix.cc. We refer to [6]
for full details of the algorithm, evaluation and related work.

II. PRELIMINARIES AND NOTATION

A. Link Discovery

The link discovery problem, which is similar to the record
linkage problem, is an ill-defined problem and is consequently
difficult to model formally [1]. In this work, we expand the
formalization presented in [8]. The goal of link discovery
can be described as follows: Given two sets of resources
S (source) and T (target) as well as a relation ρ, compute
the set M of pairs of instances (s, t) ∈ S × T such that
∀(s, t) ∈ M : ρ(s, t). The sets S resp. T are usually (not
necessarily disjoint) subsets of the resources contained in two
(not necessarily disjoint) knowledge bases KS resp. KT . In
most frameworks, the computation of whether ρ(s, t) holds for
two elements is carried out projecting the elements of S and
T based on their properties in a similarity space S and setting
ρ(s, t) iff some similarity condition σ(s, t) ≥ τ is satisfied,
where σ : S×T → [0, 1] is a similarity function and τ ∈ [0, 1].
The specification of the sets S and T and of this similarity
condition is usually carried out within a link specification. In
general, a link specification consists of three parts:

1) two sets of restrictions RS
1 ... RS

m resp. RT
1 ... RT

k that
specify the sets S resp. T ,



2) a specification of a complex similarity metric σ via the
combination of several atomic similarity measures σ1,
..., σn and

3) a set of thresholds τ1, ..., τn such that τi is the threshold
for σi.

A restriction R is generally a logical predicate.
Typically, restrictions in link specifications state the
rdf:type of the elements of the set they describe,
i.e., R(x) ↔ x rdf:type someClass or the
features the elements of the set must have, e.g.,
R(x) ↔ (x someProperty someValue). Each s ∈ S
must abide by each of the restrictions RS

1 ... RS
m, while each

t ∈ T must abide by each of the restrictions RT
1 ... RT

k .
Note that the atomic similarity functions σ1, ..., σn can be
combined to σ by different means. Also note that this formal
model allows regarding link specifications as binary classifiers
that assign the class +1 to pairs such that ρ(s, t) and −1 to
pairs that should not. This view of link specifications and the
existence of repositories for link specifications automatically
raises the question whether transfer learning can be applied
to alleviate the costs necessary to create them. Addressing
this issue is the core idea behind transfer learning.

B. Transfer Learning

Our formalization of machine learning in general and trans-
fer learning in particular is based on [11]. The goal of most
machine learning approaches is to find a predictive function
f : X → Y which can compute the right classification
f(xi) = yi when given the input data xi. We call the set X
the domain in which we are to learn the right way to classify,
while we dub the pair (f, Y ) the task t of the machine learning
approach at hand and write t = (f,Y) . In the case of link
discovery, X = S×T while Y = {+1,−1} with f(xi) = +1
if ρ(s, t) and f(xi) = −1 in all other cases. Finding the
function f for link discovery tasks is generally very costly, as
it requires either (mostly manually) labeled training data [9]
or a significant amount of computation [10]. The idea behind
transfer learning (also coined knowledge transfer) [11] can be
broadly described as follows: Given other machine learning
tasks t′ with known or unknown classification functions f ′

that are somehow “related” to f , use the functions f ′ or the
domain knowledge available for determining f ′ (i.e., transfer
the knowledge from the tasks t′) to improve the process of
finding (f,Y).

In general, three categories of transfer learning from a task
t′ = (f ′,Y ′) to a task t = (f,Y) can be differentiated: induc-
tive, transductive and unsupervised transfer learning. Inductive
learning assumes that training data for learning f is available
and aims either to reuse labeled data available for learning
f ′ (in which case inductive learning reduces to multi-task
learning) or to use the data on which f ′ is to be learned (self-
taught learning). Transductive learning assumes that labeled
data is only available for the task t′ and aims at reusing that
data for learning f . If X = X ′, then transductive learning
reduces to adapting (f ′,Y ′) to a new task. Else, if the domain
and task are the same, we are confronted with a machine

learning task which requires dealing with sample selection
biases and covariance shift. The last category of transfer
learning, unsupervised transfer learning, is concerned with
learning when labeled data is available for learning neither
(f,Y) nor (f ′,Y ′). In this paper, we address the following
transductive transfer learning task: Given a set of functions
f ′i computed for domains X ′

i , improve the determination of
the function f for solving task (f,Y) on the domain X with
∀i : X 6= X ′

i .

III. FORMAL FRAMEWORK FOR TRANSFER LEARNING OF
LINK SPECIFICATIONS

The idea behind our approach to the transfer learning of
link specifications is sketched in Figure 1. Instead of regarding
the learning of link specifications as an isolated task (see left
side of the figure), we aim to reuse existing specifications
(see right side of the figure). Based on a repository of
existing link specifications, the aim of our approach is thus
to extract knowledge out of the existing (and often validated)
specifications and transfer it to a link specification, which can
be used as a template (i.e., an initial solution f ) for the linking
task at hand. Let us assume that the current domain X = S×T
is fully known, i.e., that the set of restrictions that describe
both S and T has already been computed2. In link discovery,
the elements of the domain X are usually a set of pairs of
points (s, t) ∈ S×T from sets of instances S and T described
in a similarity space S. This similarity space is defined over a
subset of PL×P ′

L of source properties PL and target properties
P ′
L. Consequently, a link specification can be described as a

binary classifier that maps elements of (PL × P ′
L)n to the

classes +1 and -1.
One of the challenges of transferring knowledge from a

link specification to another is that link specifications can
be very complex in general since it combines restrictions,
arbitrarily nested complex similarity metrics and thresholds.
Still, given the formalization of link specifications presented
in Section II-A, we can tackle the transfer learning of link
specifications by reducing it to a set of three simpler problems:
The measurement of restriction similarity, property similarity
as well as determining the accuracy of link specifications. The
restriction similarity ensures that the domains X ′ of known
link specifications and the domain X of the link specifications
to devise are as related as possible. Here the basic idea is
that the more related X and X ′ are, the higher the probability
that the function f ′ is a good initial value for f . The property
similarity ensures that the similarity space S′ used in X ′ can
be mapped to a similarity space S that describes the elements
of X . Therewith, we ensure that the transfer of (f ′,Y ′) to
(f,Y) is possible by mapping each of the dimensions of S′

to S. Finally, we assume that not all tasks were solved with
the same accuracy. Thus we also measure the accuracy of
each task (f ′,Y ′) so as to learn from the better ones. In the
following, we describe formally how those three functions can

2Computing such restrictions is the object of ontology matching, which is
out of the scope of this paper. A good overview of approaches for achieving
such computations can be found in [14].
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Figure 1. Overview of transfer learning of link specifications.

be used for transfer learning, whereas in the next section, we
describe implementations of those functions.

Transfer learning on link specifications assumes that 2 sets
of restrictions are given and aims to find the right classifier
based on known classifiers for other source and target classes
mapped by known classifiers. As pointed out in Section II-A,
these restrictions are mostly class restrictions of the form
s rdf:type someClass. Thus, in the following, we will
reduce the similarity of restrictions to the similarity of sets of
classes. Note that this reduction does not diminish the appli-
cability of our transfer learning framework as even triples of
the form s someProperty someValue can be considered
to be class expressions. In the following, we denote the set of
all classes as C, the set of all properties as P and the set of
all link specifications as Q. Lowercase variants of these letters
are used to indicated elements of the respective sets.

The input of a transfer learning problem are two sets of
classes C ⊆ C and C′ ⊆ C, which should be mapped.
Furthermore, we assume a set {q1, . . . , qm} of existing link
specifications from which we want to transfer knowledge. In
addition, we assume the existence of two sets PL and P ′

L

denoting the sets of properties relevant for the current linking
task. Those sets can be computed automatically by determining
the properties associated with instances of C and C′ or provided
manually.

Using these preliminaries, we can define the main functions
for implementing transfer learning: ζ : 2C × 2C 7→ [0, 1]
compares the similarity of two input class sets, possibly
using background knowledge about those classes available
in the underlying triple stores, and returns a value between
0 and 1, where 0 indicates no similarity and 1 indicates
identity. Similarly, we assume the existence of a function
π : P × P 7→ [0, 1], which works analogously for properties.
The set all such property similarity functions is denoted as
Π. For each specification in the background knowledge, an
assessment function α : Q 7→ [0, 1] can be used to judge its
quality. The aim of this function is to prioritize high quality
link specifications. Specifying α is optional, i.e. it can be
omitted by dropping it from Equation 1.

In order to implement transfer learning, the basic framework
implements a set of methods: r : Q×P×Π 7→ T replaces each
source property in a link specification with the most similar
property in P according to the given similarity function π.
Analogously, r′ : Q×P ×Π 7→ T performs the same replace-

ment for target properties. Moreover, we assume the existence
of two helper functions ψ : Q 7→ 2C and ψ′ : Q 7→ 2C , which
return the source and the target classes in a link specification,
respectively. Note that the formal specification of transfer
learning can be used in all linking tools if the above four
functions are implemented.

Combining all of the above notions, we can formally define
the equation which allows computing a score ω for how well
a link specification task t′ (with link specification q′) is suited
to be for transfer learning for the task t = (f,Y) at hand:

ω(t, t′) = α(q′)ζ(ψ(q′), C)·ζ(ψ′(q′), C′)·r′(r(q′, PL, π), P ′
L, π)
(1)

Intuitively, the equation computes the product of the dif-
ferent similarity functions defined above and this depends on
the quality of existing specifications and their similarity to
the specification to devise. Furthermore, it maps properties
and classes in existing specifications to those relevant for
the current linking task. This weight function can be used
in manifold ways. For example, it can be used to compute
a weighted sum over all available link specifications. It can
also be used to sort and rank the available link specifications
and present them to the user in charge of devising the link
specification for the task at hand. Manifold approaches can be
used to implement the appropriate similarity functions σ, π
and α for computing the similarity of properties and classes
as well as the accuracy of link specifications. In the following
sections, we present such functions.

IV. HEURISTICS

A. Accuracy of Specifications

The most common method to assess precision and recall of
link specifications is to manually label created links as correct
or incorrect. Several link discovery tools such as LIMES [9]
as well as the LATC3 and SAIM4 platforms integrate user
feedback directly and let users evaluate links. Furthermore,
game-based approaches such as VeriLinks [5] have been
devised to evaluate links. In the LATC repository in particular
(which we use as a base for our evaluation) 66.47% of the
link specifications are associated with reference positive and
negative links. To estimate the quality of a link specification,
we can calculate the precision of the evaluated links as the

3http://latc-project.eu
4http://saim.sf.net



number of correct links c divided by the total number n
of evaluated links. The assumption that the precision of the
verified links can be used as approximation of the precision
of all links generated by the link specification would reflect
current practice. However, such an approximation would not
take into account that a higher number of evaluated links
usually leads to a higher confidence estimate. For this reason,
we define the specification accuracy as the center of the 95%
confidence interval of the proportion of correct links.

One weakness of our approach to compute specification
accuracy is that we cannot take any knowledge into account
about how the reference links were evaluated. The above
approach assumes that they were randomly drawn from the
set of generated links. However, in some cases algorithms
may have just presented the user problematic links with
unclear classification which is common in active learning ap-
proaches [8]. In that case, our specification accuracy estimate
tends to be too pessimistic.

B. Similarity of Classes

In addition to measuring the accuracy of link specifications,
it is central measure how similar the domain X = S × T at
hand is to domains X ′ = S′ × T ′ for which classifiers are
known. As the domains are defined by a set of restrictions,
measuring the similarity between two domains can be carried
by measuring the similarity between the restrictions that
define them. Most commonly, each source restriction RS

i is
a s rdf:type ci, where ci is the class type of s.. The call
the set R(S) =

⋃
i

{ci} the restriction set for a source S. We

define R(T ) analogously. Given this model, we implemented
two different approaches to computing the similarity of classes
(which we will denote ζ(S, S′) for the sake of brevity): a
label-based approach and a data-centric approach. The idea
behind the label-based similarity is that two sets of instances
are similar if the labels in the elements of their restriction sets
are similar. We thus defined the first similarity ζl(S, S′) as∑

ci∈R(S)

max
c′j∈R(S′)

sim(label(ci), label(c
′
j)). (2)

Here, the function label(c) returns the label of a resource while
sim is a string similarity function.

Given that the label of resources is stored in endpoints that
are not always available, we extended the similarity measure
ζl by considering the local name name of each resource as
its label. We thus extended the similarity function ζl to ζu as
follows:

ζu(S, S′) =
∑

ci∈R(S)

max
c′j∈R(S′)

sim(name(ci), name(c
′
j)).

(3)
The similarity of properties π(pi, p

′
j) can be defined analo-

gously. We implemented several property similarity functions
πl, πu and πd. Note that our approach can easily be extended
to any type of restriction. The evaluation of the similarities
can be found in[6].

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a formal model for the transfer
learning on link specifications. (Semi-)Automatic ways for
determining the right thresholds can be derived from previous
algorithms. Thus, learning link specifications can be combined
with our approach. For example, specification templates can
be used to seed genetic programming algorithms [10] such as
to accelerate their convergence. In addition, knowing which
template to use can help when choosing the right deterministic
model (Boolean classifier, linear classifier) as well as its
initialization for these models [8]. The main question behind
our future work will thus be twofold: First, we will aim to
combine existing approaches to learning link specications to
transfer learning and measure how much labeling effort can
be saved when applying transfer learning to the detection of
link specifications. Moreover, we will aim to combine our
transfer learning approach with more sophisticated class and
property similarity approaches to see how they affect our mean
reciprocal rank score.
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