SAIM — One Step Closer to Zero-Configuration
Link Discovery

Klaus Lyko, Konrad Hoffner, René Speck, Axel-Cyrille Ngonga Ngomo, and Jens
Lehmann

Universitat Leipzig, Postfach 100920, 04009 Leipzig, Germany
{lastname}@informatik.uni-leipzig.de
http://aksw.org/projects/saim

Abstract. Link discovery plays a central role in the implementation
of the Linked Data vision. In this demo paper, we present SAIM, a
tool that aims to support users during the creation of high-quality link
specifications. The tool implements a simple but effective workflow to
creating initial link specifications. In addition, SAIM implements a variety
of state-of-the-art machine-learning algorithms for unsupervised, semi-
supervised and supervised instance matching on structured data. We
demonstrate SAIM by using benchmark data such as the OAEI datasets.

Keywords: Interlinking, Machine Learning, Data Integration

1 Introduction

Links between instances are of central importance for a large number of tasks
such as data integration, federated querying and knowledge retrieval as often
pointed out in the literature [I]. Two main problems arise when trying to
discover links between data sets or deduplicate data sets. First, naive solutions
to Link Discovery (LD) need to compare all resources in the source dataset with
all resources in the target dataset and, thus, have quadratic time complexity.
Consequently, naive approaches are impractical when computing links across large
datasets such as DBpedia [2]T] or Yagd?] Time-efficient algorithms and frameworks
such as LIMES [4] and SILK E| have been developed to reduce the number of
comparisons which need to be made between resources. While these approaches
achieve practicable runtimes even on large datasets, they do not guarantee the
quality of the links that are returned by LD frameworks. Addressing this second
problem of LD demands the development of techniques that can compute accurate
link specifications for deciding whether two resources should be linked. Both
supervised (e.g., [6l7]) and unsupervised machine-learning approaches (e.g., [§])
have been proposed to achieve this goal.

! http://dbpedia.org
2 http://www.mpi-inf .mpg.de/yago-naga/yago/
3 https://www.assembla.com/spaces/silk/


http://aksw.org/projects/saim
http://dbpedia.org
http://www.mpi-inf.mpg.de/yago-naga/yago/
https://www.assembla.com/spaces/silk/

2 Lyko et al.

SAIM E| encompasses solutions for both problems within a simple interface
which implements a flexible workflow. The tool relies on algorithms implemented
in LIMES EL which have been shown to outperform the state of the art in previous
work w.r.t. time efficiency [3]. In addition to allowing expert users to create
specifications manually, SAIM implements supervised and unsupervised learning
algorithms including extensions of EAGLE [6] and the novel COALA [7] approach
(presented at the same conference), which have been shown to lead to high-quality
specifications. By these means, SAIM can support domain experts and lay users
during the creation of link specifications. Moreover, it implements the time-
efficient algorithms for class and property matching algorithms proposed in [5].
SAIM goes beyond existing interfaces for link discovery (e.g., SILK WorkbenchE[)
by supporting several self-configuration algorithms that allow the automatic
creation of link specifications. In the following, we present the workflow underlying
SAIM and then focus on the content of the SAIM demonstration.

2 SAIM

The workflow underlying SATM consists of four main steps: (1) data selection,
(2) schema matching, (3) creation of the specification and (4) execution of the
specification. In the following, we explain how SAIM supports each of these steps.

2.1 Data Selection

SAIM allows users to specify SPARQL endpoints or local RDF files (for users
with logins) as data sources. SPARQL endpoints are specified by stating the
URL of the endpoint and (if necessary) the graph from which the data is to read.
Moreover, each endpoint can be given a name. Our software signalizes to its user
whether the endpoint he selected is alive by issuing a simple SPARQL query to
the specified endpoint. Moreover, it provides a list of commonly used endpoints
such as DBpedia m Local RDF files can be in any of the serialization formats
supported by the Jena Framework E| on which SAIM relies. In addition, the tool
supports using data stored as CSV files. In the latter case, the data is converted
to RDF on the fly by using the strings contained in each column of the first row
as property labels and the elements of the first column as URI for the resources.

2.2 Schema Matching

Our approach relies on simple yet the time-efficient schema matching algorithms
presented for matching classes and properties (see Figure [1)). The user can choose

4+ SAIM stands for (Semi-)Automatic Instance Matcher and is pronounced like ”same”.
All information to the project including a demo and a screencast can be found at
http://aksw.org/projects/saim.

® See http://limes.sf.net.

S https://www.assembla.com/spaces/silk/wiki/Silk_Workbench

" http://dbpedia.org/sparql

8 http://jena.apache.org/


http://aksw.org/projects/saim
http://limes.sf.net
https://www.assembla.com/spaces/silk/wiki/Silk_Workbench
http://dbpedia.org/sparql
http://jena.apache.org/

SAIM — One Step Closer to Zero-Configuration Link Discovery 3

Create New Configuration x

1. Select SPARQL Endpoints 2. Class Matching

String based Link based
4 matches found:

http://www.okkam /_persont - http://www.okkam /_person2
Source Class Target Class
http://www.okkam.org/ontology_person1.owl#Person ~ ) http:/iwww.okkam. /_person2.

personti.nt classes person12.nt classes
> Address >

> State > Address

»

» Suburb

Fig. 1: Schema Matching step in SAIM.

between intensional matching (String based button) and a matching approach
based on stable marriage on links (Link based button, see [5] for more details).
Per default, SAIM compute the string-based matching between the class labels
by using the trigram similarity and return a sorted list of matching classes. We
chose this approach because of its time-efficiency. The user can either choose the
stable-marriage-based approach or navigate through the schemas of the dataset
to perform the schema matching manually. Note that SAIM implements fallback
solutions to be able to display the schemas of datasets with incomplete ontologies.
For example, if no statement of the form ?x a rdf:Class is found in the dataset,
our approach falls back to retrieving all distinct ?x such that triples of the form
7y a ?x is contained in the dataset.

2.3 Creation of Specifications

The creation of specifications is the most involved part of SAIM’s workflow. Once
the schema matching has been carried out, the user is presented with SAIM’s main
window. Initially, this window contains an output node. On the left, the expert
user can choose between the different properties, several similarity and distance

Fig. 2: SAIM specification window.



4 Lyko et al.

1

]

|

]

8
£

Fig. 3: Selection of algorithms.

measures (incl. Levenshtein, Trigrams, Cosine) as well as operators (incl. AND,
OR, MAX, MIN) to combine these metrics to a single specification manually (see
Figure . The user can also choose the Learn metric button instead, which
allows the user to select between several machine-learning algorithms for link
specification learning including EAGLE [6] and its extensions in COALA [7]
(Figure . After choosing these algorithms, the user is presented the most
informative positive and negative examples and can choose whether they are
matches or non-matches. SAIM supports the user in this process by allowing
him to view the values of the properties of the resources that are part of the
match or to dereference their URIs. SAIM also enables lay users to create link
specification by offering a self-configuration mode. In the corresponding window
(see Figure E[), SAIM allows the user to choose which algorithm to use and
whether the specification should be tuned towards precision or recall (the default
setting being that both are equally important). Once the user has selected a
configuration, SAIM runs unsupervised machine-learning algorithms based on
EAGLE or RAVEN and returns the specification that maximize a selected pseudo-
F-measure. The specification shown in Figure [2] was learned fully automatically
by the unsupervised version EAGLE.

elf Configuration interface
| Configure and run a selfconfiguration based on Genetic Programming.
Beta value for the pseudo-f-Measure =@ 1

Crossover probability ~——@——— 0,4

Number of generations 20 £

Choose a classifier [Pseudo F-iieasure NGLY 12 ~
Seudo F Measure NGLY12

Mutation rate

Population size 20 8

Startlearning | Show 1izpping

Fig. 4: Specification of self-configuration in SAIM.



SAIM — One Step Closer to Zero-Configuration Link Discovery 5

3 Demonstration

The goal of the demonstration will be to show the whole workflow described above
from the datasets to the export of the resulting specification and links. We will
begin by showing how SAIM deals with data in SPARQL endpoints and with local
datasets. Thereafter, we will present and explain how SAIM suggests class and
property matchings to the user.We will especially explain the hierarchy of fallback
solutions that SAIM employs to generate both an overview of the class structure
and the corresponding class matching as well as how it uses extensional and
intensional schema matching approaches for both class and property matching.
In a third step, we will then showcase the approaches implemented in SAIM.
We will begin by showing how the expert user can use SAIM to create link
specifications manually. Thereafter, we will present how domain experts can
employ the active learning algorithms EAGLE and COALA to learn and refine
link specifications iteratively. Then, we show how lay users can use unsupervised
machine learning to have SAIM detect a high-quality link specification for them.
Finally, we will demonstrate how the results of the specification process (i.e., the
link specification and the resulting mappings) can be downloaded from SAIM
for use in further applications. Throughout the demonstration, we will employ
benchmark datasets such as those provided by the OAEI challenges El

4 Conclusions and Future Work

We present SAIM, an interface for the creation of high-quality link specifications.
SAIM represents a further step towards the vision of zero-configuration link
discovery as it allows users to create such specifications with minimal effort.
In future work, we will extend SAIM with more algorithms for learning link
specifications and aim to achieve our vision of easy and effective link discovery.

References

1. S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo. Introduction to linked data and its
lifecycle on the web. In Reasoning Web, pages 1-75, 2011.

2. M. Morsey, J. Lehmann, S. Auer, C. Stadler, and S. Hellmann. DBpedia and the
live extraction of structured data from wikipedia. Program: electronic library and
information systems, 46:27, 2012.

3. A.-C. Ngonga Ngomo. On link discovery using a hybrid approach. Journal on Data
Semantics, 1:203 — 217, December 2012.

4. A.-C. Ngonga Ngomo and S. Auer. LIMES - A Time-Efficient Approach for Large-
Scale Link Discovery on the Web of Data. In Proceedings of IJCAI 2011.

5. A.-C. Ngonga Ngomo, J. Lehmann, S. Auer, and K. Hoffner. RAVEN — Active
Learning of Link Specifications. In Proceedings of OM@ISWC, volume 814, 2011.

6. A.-C. Ngonga Ngomo and K. Lyko. Eagle: Efficient active learning of link specifica-
tions using genetic programming. In Proceedings of ESWC, 2012.

7. A.-C. Ngonga Ngomo, K. Lyko, and V. Christen. Coala — correlation-aware active
learning of link specifications. In Proceedings of ESWC, 2013.

8. A. Nikolov, M. D’Aquin, and E. Motta. Unsupervised learning of data linking
configuration. In Proceedings of ESWC, 2012.

9 http://oaei.ontologymatching.org/


http://oaei.ontologymatching.org/

	SAIM – One Step Closer to Zero-Configuration Link Discovery
	Introduction
	SAIM
	Data Selection
	Schema Matching
	Creation of Specifications

	Demonstration
	Conclusions and Future Work


