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Abstract. With the growth of the Linked Data Web, time-efficient ap-
proaches for computing links between data sources have become indis-
pensable. Yet, in many cases, determining the right specification for a
link discovery problem is a tedious task that must still be carried out
manually. In this article we present RAVEN, an approach for the semi-
automatic determination of link specifications. Our approach is based
on the combination of stable solutions of matching problems and active
learning leveraging the time-efficient link discovery framework LIMES.
RAVEN is designed to require a small number of interactions with the
user in order to generate classifiers of high accuracy. We focus with
RAVEN on the computation and configuration of Boolean and weighted
classifiers, which we evaluate in three experiments against link specifi-
cations created manually. Our evaluation shows that we can compute
linking configurations that achieve more than 90% F-score by asking the
user to verify at most twelve potential links.
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1 Introduction

The rationale of the Linked Data paradigm is to facilitate the transition from the
document-oriented to the Semantic Web by extending the current Web with a
commons of interlinked data sources [6]. Two key challenges arise when trying to
discover links between data sources: the computational complexity of the match-
ing task per se and the selection of an appropriate configuration for maximizing
precision and recall.

The first challenge lies in the a-priori complexity of a matching task being
proportional to the product of the number of instances in the source and target
data source, an unpractical proposition as soon as the source and target knowl-
edge bases become large. With the LIMES framework1 [30, 29], we addressed
this challenge by providing a lossless approach for time-efficient link discovery
that is significantly faster than the state-of-the-art.

1 http://limes.sf.net



The second challenge of the link discovery process lies in the specification of
an appropriate configuration for the tool of choice. Such a specification usually
consists of (1) a set of restrictions on the source and target knowledge base, (2)
a list of properties of the source and target knowledge base to use for similarity
detection, (3) a combination of suitable similarity measures (e.g., Levenshtein
[24]) and (4) similarity thresholds. Until now, such link discovery specifications
are usually defined manually, in most cases via a time-consuming trial-and-
error approach. Yet, the choice of a suitable configuration decides upon whether
satisfactory links can be discovered. Specifying complex link configurations is
a tedious process, as the user does not necessary know which combinations of
properties lead to an accurate linking configuration. The difficulty of devising
suitable link discovery specifications is amplified on the Web of Data by the
sheer size of the knowledge bases (which often contain millions of instances) and
their heterogeneity (i.e., by the complexity of the underlying ontologies, which
can contain thousands of different types of instances and properties) [6].

In this paper, we present the RApid actiVE liNking (RAVEN) approach.
To the best of our knowledge, RAVEN is the first approach to apply active
learning techniques for the semi-automatic generation of specifications for link
discovery. Our approach is based on a combination of stable matching problems
(as known from machine learning) and a novel active learning algorithm derived
from perceptron learning. RAVEN allows to determine:

– A sorted matching of classes to interlink ; this matching represents the set
of restrictions on the source and target knowledge bases.

– A stable matching of properties based on the selected restrictions that spec-
ifies the similarity space within which the linking is to be carried out.

– A highly accurate link specification including similarity measures and thresh-
olds obtained via active learning.

Our evaluation with three series of experiments shows that we can compute
linking configurations that achieve more than 90% F-score by asking the user to
verify at most twelve potential links. The RAVEN approach is generic enough
to be implemented within any link discovery framework that supports complex
link specifications. The results presented herein were obtained by implementing
RAVEN within the LIMES framework. We chose LIMES because it implements
lossless approaches2 and is very time-efficient. A graphical user interface for the
approach is available with SAIM3.

This article is an extension of the corresponding workshop article presenting
the RAVEN approach in [31]. Changes include an extended discussion of the
evaluation results, e.g. the inclusion of property and class matching. Further-
more, the related work part was extended as well as further illustrations and
explanations were added throughout the paper.

After discussing related work in Section 2, we explain preliminary notions for
link discovery and stable matching in Section 3. The approach itself is discussed

2 That is, approaches that are guaranteed to retrieve all links that abide by a given a
link specification. Note that some blocking approaches do not fulfill this requirement.

3 http://saim.sf.net



in Section 4. We continue by analysing RAVEN with three different linking tasks
in Section 6 and finally conclude in Section 7 with an outlook on future work.

2 Related Work

Previous work related to this article can be divided in two main areas: the
computation of links called link discovery and the learning of link heuristics.

2.1 Link Discovery

Current approaches for link discovery on the Web of Data can be subdivided
into two categories: domain-specific and universal approaches.

Domain-specific link discovery frameworks aim at discovering links between
knowledge bases from a particular domain. For example, the approach imple-
mented in RKB knowledge base (RKB-CRS ) [14] focuses on computing links
between universities and conferences while GNAT [35] discovers links between
music data sets. Further simple or domain-specific approaches can be found in [9,
32, 45, 17, 41, 33].

Universal link discovery frameworks are designed to carry out mapping tasks
independently from the domain of the source and target knowledge bases. For ex-
ample, RDF-AI [39] implements a five-step approach that comprises the prepro-
cessing, matching, fusion, interlinking and post-processing of data sets. SILK [45]
is a time-optimized tool for link discovery. It implements a multi-dimensional
blocking approach that projects the instances to match in a multi-dimensional
metric space. Subsequently, this space is subdivided into to overlapping blocks
that are used to retrieve matching instances without loosing links. Another loss-
less link discovery framework is LIMES [30], which addresses the scalability prob-
lem by utilizing the triangle inequality in metric spaces to compute pessimistic
estimates of instance similarities. Based on these approximations, LIMES can
filter out a large number of instance pairs that cannot suffice the matching
condition set by the user. The experiments presented herein were carried out
employing LIMES for performing the link discovery computations.

The task of discovering links between knowledge bases is closely related with
record linkage [46, 11] and deduplication [8]. The database community has pro-
duced a vast amount of literature on efficient algorithms for solving these prob-
lems. Different blocking techniques such as standard blocking, sorted-neighborhood,
bi-gram indexing, canopy clustering and adaptive blocking (see, e.g., [21]) have
been developed to address the problem of the quadratic time complexity of brute
force comparison methods. In addition, automatic techniques that aim at easing
schema matching have also been developed. For example, [22] generates syn-
thetic data out real data to create a ground truth that allow for tuning schema
matching systems. [27] employ ensemble-learning techniques (especially boost-
ing) to combine schema matchers while [10] implements a library a supervised
classifiers to achieve the same goal.



2.2 Learning Link Heuristics

The second relevant research area for this paper is related to learning link spec-
ifications, which is usually carried out using a combination of shallow natural
language processing (NLP) and machine learning methods. The existing meth-
ods aim at either one or both of the following goals: On the one hand, link
creation should be made more reliable than purely manual approaches by using
manual samples (supervised learning) for estimating precision and recall, user
feedback (active learning) or analyzing network and other characteristics. On
the other hand, those methods should also simplify the link creation process.
As explained above, finding good interlinking heuristics can be burdensome and
both non-experts and experts in the considered domain may struggle to find
corresponding classes, properties, metrics and weights for their combination.

There has been a significant body of research work dedicated to matching
ontologies [34, 23, 44, 15], including benchmarks in the ontology alignment eval-
uation initiative (OAEI). A recent comprehensive survey can be found in [4],
which covers many aspects of the research field. Finding links on instance level,
which is the primary concern of this paper, has received less attention, although
OAEI has been extended in 2009 with benchmarks in this area [12].

One approach in this area is RiMOM [25], which combines several tech-
niques to compute matchings. When matching instances, it takes the schema
of the knowledge bases into account. RiMOM combines several strategies and
similarity functions and works unsupervised, i.e. without training. Another ap-
proach is ObjectCoRef [18]. It is based on learning the most distinctive features,
i.e. property-value pairs, of entities in knowledge bases. In contrast to other ap-
proaches, it is not aimed at computing all links between two knowledge bases,
but considers the task of linking entities in a whole cloud of knowledge bases
(typically, the LOD cloud4) in a semi-supervised approach. Another recent ap-
proach is SERIMI [2]. It proceeds in two phases: a selection and a disambiguation
phase. In the selection phase, SERIMI computes a mapping which interlinks en-
tities in two input knowledge bases with low precision and high recall. In this
phase, it relies on string similarity of the labels of entities. The disambiguation
phase filters the output of the first phase by deciding amongst candidates with
equal or similar labels.

In both cases, one of the problems is to obtain appropriate data for utilizing
machine learning approaches without overburdening the user [5, 20]. For this
reason, active learning has been employed by the database community [37, 38,
1]. Active learning approaches usually present only few match candidates to the
user for manual verification. The technique is particularly efficient in terms of
required user input [40], because the user is only confronted with those match
candidates which provide a high benefit for the underlying learning algorithm.

The RAVEN approach presented in this article goes beyond the state-of-the-
art in several ways: It is the first RDF-based approach to use active learning
for obtaining interlinking heuristics. In addition, it is the first active learning

4 http://lod-cloud.net



algorithm in this area. Moreover, it is the first approach to detect corresponding
classes and properties automatically for the purpose of link discovery. Note that
this challenge is very specific to and particularly relevant for the Data Web.
In similar approaches developed for databases, the mapping of columns is often
assumed to be known [1]. Yet, this assumption cannot be made when trying to
link knowledge bases from the Web of Data because of the possible size of the
underlying ontology. By supporting the automatic detection of links, we are able
to handle heterogeneous knowledge bases with extremely large schemata.

3 Preliminaries

Our approach to the active learning of linkage specifications extends ideas from
several research areas, especially classification and stable matching problems. In
the following, we present the notation that we use throughout this article and
explain the theoretical framework underlying our work.

3.1 Problem Definition

The link discovery problem, which is similar to the record linkage problem, is an
ill-defined problem and is consequently difficult to model formally [1]. In general,
link discovery aims to discover pairs (s, t) ∈ S × T related via a relation R.

Definition 1 (Link Discovery). Given two sets S (source) and T (target) of
entities, compute the set M of pairs of instances (s, t) ∈ S×T such that R(s, t).

The sets S resp. T are usually (not necessarily disjoint) subsets of the in-
stances contained in two (not necessarily disjoint) knowledge bases KS resp. KT .
In most cases, the computation of whether R(s, t) holds for two elements is car-
ried out by projecting the elements of S and T based on their properties in a
similarity space S and setting R(s, t) iff some similarity condition is satisfied.
The specification of the sets S and T and of this similarity condition is usu-
ally performed within a link specification which is the input for a link discovery
framework such as LIMES or SILK.

Definition 2 (Link Specification). A link specification consists of three parts:
(1) two sets of restrictions RS1 ... RSm resp. RT1 ... RTk that specify the sets S
resp. T , (2) a specification of a complex similarity metric σ via the combination
of several atomic similarity measures σ1, ..., σn and (3) a set of thresholds τ1,
..., τn such that τi is the threshold for σi.

A restriction R is generally a logical predicate. Typically, restrictions in link
specifications state (a) the rdf:type of the elements of the set they describe,
i.e., R(x) ↔ x rdf:type someClass or (b) the features the elements of the
set must have, e.g., R(x) ↔ (∃y : x someProperty y). Each s ∈ S must abide
by each of the restrictions RS1 ... RSm, while each t ∈ T must abide by each of
the restrictions RT1 ... RTk . Note that the atomic similarity functions σ1, ..., σn



can be combined to σ by different means. In this paper, we will focus on using
Boolean operators and real weights combined as conjunctions. Also note that we
are aware that several other categories of approaches can be used to determine
pairs (s, t) such that R(s, t), including approaches based on ontology matching,
semantic similarity and formal inference. In this paper, we will be concerned ex-
clusively with link discovery problems that can be specified via link specifications
as defined above.

According to the formalizations of link discovery and link specifications above,
finding matching pairs of entities can be defined as a classification task, where
the classifier C maps each pair (s, t) ∈ S × T to one of the classes {−1,+1}.

Definition 3 (Link Discovery as Classification). Given the set S × T of
possible matches, the goal of link discovery is to find a classifier C : S × T →
{−1,+1} such that C maps non-matches to the class −1 and matches to +1. M
is then the set {(s, t) : C(s, t) = +1}.

In general, we assume classifiers that operate in an n-dimensional similarity
space S. Each of the dimensions of S is defined by a similarity function σi
that operates on a certain pair of attributes of s and t. Each classifier C on
S can be modeled via a specific function FC . C then returns +1 iff the logical
statement PC(FC(s, t)) holds and −1 otherwise, where PC is what we call the
specific predicate of C. In this work, we consider two families of classifiers: linear
weighted classifiers L and Boolean conjunctive classifiers B. The specific function
of linear weighted classifiers is of the form

FL(s, t) =

n∑
i=1

ωiσi(s, t), (1)

where ωi ∈ R. The predicate PL for a linear classifier is of the form PL(X) ↔
(X ≥ τ), where τ = τ1 = ... = τn ∈ [0, 1] is the similarity threshold. A Boolean
classifier B is a conjunction of n atomic linear classifiers C1, ... ,Cn, i.e., a con-
junction of classifiers that each operate on exactly one of the n dimensions of
the similarity space S. Thus, the specific function FB is a Boolean function of
the form

FB(s, t) =

n∧
i=0

(σi(s, t) ≥ τi) (2)

and the specific predicate is simply PB(X) = X. Note, that given that classi-
fiers are usually learned by using iterative approaches, we will denote classifiers,
weights and thresholds at the tth iteration by using superscripts, i.e., Ct, ωti and
τ ti .

Current approaches to learning in record matching assume that the simi-
larity space S is given. While this is a sensible premise for mapping problems
which rely on simple schemas, the large schemas (i.e., the ontologies) that un-
derlie many data sets in the Web of Data do not allow such an assumption.
DBpedia [7, 43, 28] (version 3.6) for example contains 289,016 classes which are
partially mapped to 275 classes from the main DBpedia ontology. Moreover, it



contains 42,016 properties, which are partially mapped to 1,335 properties from
the main DBpedia ontology. Thus, it would be extremely challenging and tedious
at best for a user to specify the properties to map when carrying out a simple
deduplication analysis, let alone more complex tasks using the DBpedia data
set. Other data sets in the LOD cloud, such as LinkedGeoData [42, 3] are even
larger or have a similar size. Thus, being able to scale to those datasets is of
crucial importance. In the following, we give a brief overview of stable matching
problems, which we use to solve the problem of suggesting appropriate sets of
restrictions on data and matching properties to generate a similarity space S in
which the link discovery problem can be carried out.

3.2 Stable Matching Problems

The best known stable matching problem is the stable marriage problem SM as
formulated by [13]. The basic problem here is as follows: given two sets of males
and females of equal magnitude, compute male-female pairings that are such
that none of the partners p1 in the pairings can cheat on his/her partner with
another person p2 that he/she prefers. Cheating is considered to be possible iff
this other person, i.e., p2, also considers the partner willing to cheat (p1) more
suitable than his/her current partner.

Formally, we assume two sets M (males) and F (females) such that |M | = |F |
and two functions µ : M × F → {1, ..., |F |} resp. γ : M × F → {1, ..., |M |}, that
give the degree to which a male likes a female and vice versa. µ(m, f) > µ(m, f ′)
means that m prefers f to f ′. Note, that for all f and f ′ where f 6= f ′ holds,
µ(m, f) 6= µ(m, f ′) must also hold. Analogously, m 6= m′ implies γ(m, f) 6=
γ(m′, f). A bijective function s : M → F is called a stable matching iff for all
m, m′, f , f ′ the following holds:

(s(m) = f) ∧ (s(m′) = f ′) ∧ (µ(m, f ′) > µ(m, f))→ (γ(m′, f ′) > γ(m, f ′)) (3)

In [13] an algorithm for solving this problem is presented and it is shown
how it can be used to solve a generalization of the stable marriage problem, i.e.,
the well-known Hospital/Residents (HR) problem. Formally, HR assumes a set
R of residents r ∈ R that each have a sorted preference list of p(r) of hospitals
they would like admission to. The list p(r) can be derived from the preference
function µ as defined for the stable marriage problem. We write p(x, y) = n to
state that y is at position n in the preference list of x, where x can be a hospital
or a resident. Each hospital h from the set H of hospitals also has a preference
list p(h) of residents and a maximal capacity c(h). Similarly to p(r), the list p(h)
can be derived from the preference function γ as defined for the stable marriage
problem. A stable solution of the Hospital/Residents problem is a mapping of
residents to hospitals such that:

– Each hospital accepts maximally c(h) residents;
– No resident r is assigned to a hospital h such that a hospital h′ which had a

higher preference in p(r) would be willing to admit r and vice-versa.



Algorithm 1 RAVEN’s stable matching algorithm

Require: Set of residents R
Require: Set of hospitals H
Require: Preference function p

M = ∅ // Mapping of hospitals to residents
for r ∈ R do
i(r) = 0 //index for preference function

end for
for h ∈ H do
c(h) =

⌈
|R|
|H|

⌉
//capacity setting

end for
while R 6= ∅ do

for r ∈ R do
h = p(r)[i(r)]
if |M(h)| < c(h) then

M(h) := M(h) ∪ {r}
R = R\{r}

else
if ∃r′ ∈ M(h) p(h, r) < p(h, r′) then
r′′ = arg min

r′∈M(h)

p(h, r′)

R = R ∪ {r′′}
M(h) := M(h)\{r′′}
M(h) := M(h) ∪ {r}
R = R\{r}

end if
end if
i(r) + +

end for
end while
return M

Note that we assume there are no ties, i.e., that the functions µ and γ are
injective. Given these premises, [13] shows that a stable matching always exists.
Consequently, Algorithm 1 is guaranteed to return a solution. Note that we set
the capacity of the hospitals to the smallest whole number that ensures that each
resident finds a hospital. Also note that p(h, r) < p(h, r′) means that h prefers
r over r′. More details on stable matching can be found in [26].

3.3 Active Learning

Supervised batch learning approaches for learning classifiers must rely on large
amounts of labeled data to achieve a high accuracy. For example, the genetic
programming approach used in [19] has been shown to achieve high accuracies
when supplied with more than 1000 positive examples. The idea behind active
learning approaches (also called curious classifiers [40]) is to reduce the amount
of labeled data needed for learning link specifications. This is carried out by



querying for the labels of chosen pairs (s, t) iteratively within the following three-
step process: In a first step, we begin with an initial classifier C0. This classifier
is usually derived by using either a rule of thumb (as in the case of RAVEN)
or generated randomly (e.g., in genetic programming). During each iteration
t ∈ N (step 2), we compute a set of k+ most informative positive resp. k− most
informative negative examples (where k+, k− ∈ N). These are pairs (s, t)

1. whose classification is unknown,

2. which are classified as being links resp. not being links by the classifier at
iteration and

3. which maximize an informativeness function.

In the case of linear classifiers, for example, the informativeness function is usu-
ally the distance from a pair (s, t) to the boundary of the current classifier. The
most informative examples are presented to a human judge who provides the
classifier with the correct classification. This feedback is then used to update the
classifier. The iteration process is repeated until a termination condition such
as a maximal number of iterations, no further improvements within a certain
number of iterations or a perfect match between the human judgement and the
automatic classification is reached (step 3). In the following, we present an ap-
proach that implements these principles in detail. The reader is referred to [40]
for more details on active learning.

4 The RAVEN Approach

Our approach, dubbed RAVEN (RApid actiVE liNking), addresses the task of
linking two knowledge bases S and T by using the active learning paradigm
within the pool-based sampling setting [40]. Overall, the goal of RAVEN is to
find the best classifier C that achieves the highest possible precision, recall or F1

score as desired by the user. The algorithm also aims to minimize the burden on
the user by limiting the number of link candidates that must be labeled by the
user to a minimum.

Algorithm 2 The RApid actiVE liNking (RAVEN) algorithm

Require: Source knowledge base KS

Require: Target knowledge base KT

Find stable class matching between classes of KS and KT

Find stable property matching for the selected classes
Compute sets S and T ; Create initial classifier C0; t := 0
while termination condition not satisfied do

Ask the user to classify 2α examples; Update Ct to Ct+1; t := t+1
end while
Compute set M of links between S and T based on Ct

return M



An overview of our approach is given in Algorithm 2. In a first step, RAVEN
aims to detect the restrictions that will define the sets S and T . To achieve this
goal, it tries to find a stable matching of pairs of classes, whose instances are
to be linked. This is done by applying a two-layered approach and generating a
sorted list of class mappings that are presented to the user, who can choose the
pair that is to be matched. The second step of our approach consists of finding a
stable matching between the properties that describe the instances of the classes
specified in the first step. The user is also allowed to alter the suggested matching
at will. Based on the property mapping, we compute S and T and generate an
initial classifier C = C0 in the third step. We then refine C iteratively by asking
the user to classify pairs of instances that are most informative for our algorithm.
C is updated until a termination condition is reached, for example Ct = Ct+1. The
final classifier is used to compute the links between S and T , which are returned
by RAVEN. In the following, we expand upon each of these three steps.

4.1 Stable Matching of Classes

The first component of a link specification is a set of restrictions that must be
fulfilled by the instances that are to be matched. We present herein how such
a matching can be carried out for restrictions that are of the form R(x) ↔
x rdf:type someClass, as they are the most commonly used restriction. We
use a two-layered approach for matching classes in knowledge bases. Our default
approach begins by selecting a user-specified number of sameAs links between
the source and the target knowledge base randomly. Then, it computes µ and γ
on the classes CS of KS and CT of KT as follows5:

µ(CS , CT ) = γ(CS , CT ) = |{s type Cs ∧ s sameAs t ∧ t type CT }|. (4)

Although several million sameAs links exist on the Web of Data, some knowledge
bases that refer to the same entities do not share any links. Consequently, our
default approach fails when trying to process such pairs of knowledge bases. In
this case, we run our fallback approach. It computes µ and γ on the classes of S
and T as follows:

µ(CS , CT ) = γ(CS , CT ) = |{s type Cs ∧ s p x ∧ t type CT ∧ t q x}|, (5)

where p and q can be any property. Hence, the similarity of two classes is com-
puted as the number of property values shared by triples such that their subjects
are instances of CS resp. CT . Note that this similarity is independent from the
properties through which the instances are connected to the property values.

We can draw on stable matchings, as introduced in Section 3.2 in order to find
the most suitable pair of classes as follows: Let c(S) be the number of classes CS
of S such that µ(CS , CT ) > 0 for any CT . Furthermore, let c(T ) be the number
of classes CT of T such that γ(CS , CT ) > 0 for any CS . The capacity of each CT
is set to dc(S)/c(T )e, thus ensuring that the hospitals provide enough capacity

5 Note that we used type to denote rdf:type and owl:sameAs to denote sameAs.



to map all the possible residents. Once µ, γ and the capacity of each hospital
has been set, we solve the equivalent HR problem. It is important to note that
although the functions µ and γ are equivalent in both our default and our fallback
approaches, the resulting problem is not symmetric, i.e., p(CS , CT ) = ζ does not
imply that p(CT , CS) = ζ.

After the HR problem has been solved, we present the user with a stable
matching sorted in descending order relatively to µ(CS , CT ), thereby selecting
the pair with the highest µ(CS , CT ) as default match. Note that the fallback
approach is approximately 30% slower than our default approach. Also, if the
fallback approach fails, then we require the user to enter the class mapping
manually.

4.2 Stable Matching of Properties

The detection of the best matching pairs of properties is very similar to the
computation of the best matching classes. For datatype properties p and q, we
set:

µ(p, q) = γ(p, q) = {s type Cs ∧ s p x ∧ t type CT ∧ t q x}. (6)

Note that while this equation might appear to be the same as Equation 4, they
are actually different as p and q are bound in this equation. Thus, the similarity
value that is computed is the number of common values that p and q link to
and not (as in Equation 4) the number of common objects to triples whose
subjects are instances of CS resp. CT . The initial mapping of properties defines
the similarity space in which the link discovery task will be carried out. Note
that none of the prior approaches to active learning for record linkage or link
discovery automatized this step. We associate each of the basis vectors σi of
the similarity space to exactly one of the pairs (p, q) of mapping properties
detected by RAVEN. Once the restrictions and the property mapping have been
specified, we can fetch the elements of the sets S and T . Given S and T , we can
now compute an initial classifier that will be iteratively updated by RAVEN.

4.3 Initial Classifier

The specific formula for the initial linear weighted classifier L0 results from the
formal model presented in Section 3 and is given by

FL0(s, t) =

n∑
i=1

ω0
i σi(s, t). (7)

Several initialization methods can be used for ω0
i and the initial threshold τ0

of PL. Here we chose the use the simplest possible approach by setting ω0
i := 1

and τ0 := κn, where κ ∈ [0, 1] is a user-specified threshold factor. Note that
setting the overall threshold to κn is equivalent to stating that the arithmetic
mean of the σi(s, t) must be equal to κ.



The equivalent initial Boolean classifier B0 is given by

FB0(s, t) =

n∧
i=0

(σ0
i (s, t) ≥ τ0i ) where τ0i := κ. (8)

4.4 Updating Classifiers

RAVEN follows an iterative update strategy, which consists of asking the user to
classify 2α elements of S × T (α is explained below) in each iteration step t and
using these to update the values of ωt−1i and τ t−1i computed at step t− 1. The
main requirements to the update approach is that it computes those elements
of S × T whose classification allow to maximize the convergence of Ct to a good
classifier and therewith to minimize the burden on the user. The update strategy
of RAVEN varies slightly depending on the family of classifiers. In the following,
we present how RAVEN updates linear and Boolean classifiers.

Updating linear classifiers. The basic intuition behind our update approach
is that given an initial classified L0, we aim to iteratively present the user with
those elements from S × T whose classification is most unsure until we reach a
certain termination condition. An example of such an initial classifier is shown
in Figure 1(a). We call the elements presented to the user examples. We call an
example positive when it is assumed by the classifier to belong to +. Else we
call it negative. In Figure 1, the elements that the classifier assigns to the class
+ are drawn in violet, while the elements of − are drawn in orange. Once the
user has provided us with the correct classification for the examples presented
to him, the classifier can be updated effectively so as to better approximate the
target classifier. In the following, we will define the notion of most informative
example for linear classifiers before presenting our update approach.

When picturing a classifier as a boundary in the similarity space S that
separates the classes + and −, the examples whose classification is most uncer-
tain are obviously those elements from S × T who are closest to the boundary
specified by the classifier at hand. Note that we must exclude examples that
have been classified previously, as presenting them to the user would not im-
prove the classification accuracy of RAVEN while generating extra burden on
the user, who would have to classify the same link candidate twice. Figure 1(b)
depicts the idea behind most informative examples for linear classifiers. The ele-
ments of + and − that were not previously classified and that are closest to the
boundary of L are selected as being most informative. These are the elements
that are presented to the oracle (i.e., the user) for classification. An example
of an oracle-given classification is given in Figure 1(c). The nodes marked with
a + were marked by the user as being correct links, while those marked with
a − were labeled as incorrect. Here, our classifier only classified one example
correctly. Given this information, we aim to generate a classifier that minimize
the overall error of RAVEN. To achieve this goal, we update the classifier by
using an approach derived from perceptron learning as shown in Figure 1(d).



(a) Initial classifier (b) Most informative positives and nega-
tives

(c) Oracle results (d) Classifier update

(e) Most informative positives and nega-
tives

(f) Termination

Fig. 1. Active learning as implemented by RAVEN. The most informative negative
and positive examples are marked with an “X”. The classified examples are marked
with “+” for positive and “-” for negative.

The basic intuition behind choosing perceptron learning over other approaches
is that we assume that our classifier should not be altered too drastically after
each iteration, a goal which can be achieved with this approach. We iterate the
computation of the most informative positive and negative examples (see Fig-
ure 1(e)) until a termination condition is reached, e.g., until the classifier can
predict the user classification correctly (see Figure 1(e)).

Formally, let Mt be the set of (s, t) ∈ S × T classified by Lt as belonging to
+1. Furthermore, let Pt−1 (resp. N t−1) be the set of examples that have already
been classified by the user as being positive examples, i.e, links (resp. negative
examples, i.e., wrong links) in the first t−1 iterations. We define a set Λ as being
a set of most informative examples λ for Lt+1 when the following two conditions
hold:



∀λ ∈ S × T (λ ∈ Λ→ λ /∈ Pt−1 ∪N t−1) (9)

∀λ′ /∈ Pt−1 ∪N t−1 : λ′ 6= λ→ |FLt(λ′)− τ t| ≥ |FLt(λ)− τ t|. (10)

Note that there are several sets of most informative examples of a given magni-
tude. We denote a set of most informative examples of magnitude α by Λα. A
set of most informative positive examples, Λ+, is a set of pairs such that

∀λ /∈ Λ+∪Pt−1∪N t−1 : (FLt(λ) < τ t)∨(∀λ+ ∈ Λ+ : FLt(λ) > FLt(λ+)). (11)

In words, Λ+ is the set of examples that belong to class + according to C and are
closest to C’s boundary. Similarly, the set of most informative negative examples,
Λ−, is the set of examples such that

∀λ /∈ Λ−∪Pt−1∪N t−1 : (FLt(λ) ≥ τ t)∨(∀λ− ∈ Λ− : FLt(λ) < FLt(λ−)). (12)

We denote a set of most informative (resp. negative) examples of magnitude α
as Λ+

α (resp. Λ−α ). The 2α examples presented to the user consist of the union
Λ+
α ∪ Λ−α , where Λ+

α and Λ−α are chosen randomly amongst the possible sets of
most informative positive resp. negative examples .

The update rule for the weights of Lt is derived from the well-known Per-
ceptron algorithm (see e.g., [36]), i.e.,

ωt+1
i = ωti + η+

∑
λ∈Λ+

ρ(λ)σi(λ)− η−
∑
λ∈Λ−

ρ(λ)σi(λ), (13)

where η+ is the learning rate for positives examples, η− is the learning rate for
negative examples and ρ(λ) is 0 when the classification of λ by the user and Lt
are the same and 1 when they differ.

The threshold is updated similarly, i.e,

τ t+1
i = τ ti + η+

∑
λ∈Λ+

α

ρ(λ)FLt(λ)− η−
∑
λ∈Λ−α

ρ(λ)FLt(λ). (14)

Note that the weights are updated by using the dimension which they de-
scribe while the threshold is updated by using the whole specific function. Finally,
the sets Pt−1 and N t−1 are updated to

Pt := Pt−1 ∪ Λ+
α (15)

and
N t := N t−1 ∪ Λ−α . (16)

Updating Boolean classifiers The notion of most informative example differs
slightly for Boolean classifiers. λ is considered a most informative example for B
when the conditions

λ /∈ Pt−1 ∪N t−1 (17)



and

∀λ′ /∈ Pt−1 ∪N t−1 : λ′ 6= λ→
n∑
i=1

|σti(λ′)− τ ti | ≥
n∑
i=1

|σti(λ)− τ ti | (18)

hold. The update rule for the thresholds τ ti of B is then given by

τ t+1
i = τ ti + η+

∑
λ∈Λ+

α

ρ(λ)σi(λ)− η−
∑
λ∈Λ−α

ρ(λ)σi(λ), (19)

where η+ is the learning rate for positives examples, η− is the learning rate for
negative examples and ρ(λ) is 0 when the classification of λ by the user and Ct−1
are the same and 1 when they differ. The sets Pt−1 and N t−1 are updated as
given in Equations 15 and 16.

5 Implementation

As stated above, RAVEN was implemented based on LIMES but the core ideas
presented herein can be implemented in any link discovery framework. Figure 2
gives an overview of the workflow behind RAVEN. Once the classes and proper-
ties have been matched, RAVEN begins by generating an initial classifier. This
classifier is converted into a link specification object that is forwarded to the
LIMES kernel. The kernel then runs the link specification and generates a set of
potential links with are sent back to RAVEN. RAVEN then computes the most
informative positive and negative links and sends this set of inquiries to the
oracle (i.e., the user). The oracle then classifies the links and sends the correct
classification back to RAVEN. If the classification has not been altered, RAVEN
terminates. Else the current classifier is updated and then transformed into a
link specification, therewith starting the cycle anew. Note that the RAVEN al-
gorithm is deterministic.

Classifier 

Link Discovery 

Framework (LIMES) 

Most informative 

examples 

Oracle 

Correct 

classification 

RAVEN 

Update 

Links 

Link specification 

Fig. 2. Workflow of the RAVEN implementation.



6 Experiments and Results

6.1 Experimental Setup

We carried out three series of experiments to evaluate our approach. In our first
experiment, dubbed Diseases, we aimed to map diseases from DBpedia with
diseases from Diseasome. In the Drugs experiments, we linked drugs from Sider
with drugs from Drugbank. Here, only 43 links were to be detected. Finally, in
the Side-Effects experiments, we aimed to link side-effects of drugs and diseases
in Sider and Diseasome. The reference data consisted of 454 links. The size of
the reference data is given in Table 1

Experiment S T |S| |T | Number of correct links

Diseases DBpedia Diseasome 4647 4213 178

Drugs Sider Drugbank 914 4772 43

Side-Effects Sider Diseasome 1737 4213 454
Table 1. Overview of experimental data.

In all experiments, we aimed to compute how well linear and Boolean clas-
sifiers learned by RAVEN could approximate a manually specified configuration
for mapping two knowledge bases. We used the following setup: The learning
rates η+ and η− as explained in Section 4.4 were set to the same value η, which
we varied between 0.01 and 0.1. We set the number of inquiries, i.e. the number of
questions asked to the user, per iteration to 4. The threshold factor κ, explained
in Section 4.3 was set to 0.8. In addition, the number of instances used during
the automatic detection of class resp. property matches was set to 100 resp. 500.
If no class mapping was found via sameAs links, then the fallback solution was
called and compared the property values of 1000 instances chosen randomly from
the source and target knowledge bases. We used the trigrams metric as default
similarity measure for strings and the Euclidean similarity as default similarity
measure for numeric values. As reference data, we used the set of instances that
mapped perfectly according to a configuration created manually, which is simi-
lar to the approach in [19]. We can then compute precision, recall and F-score
against those reference links. We also measured the total number of inquiries,
i.e. questions to the oracle, that RAVEN needed to reach its maximal F-score.
All experiments were carried out on an Intel Core2 Duo computer with 2.53GHz
and 3072MB RAM.

6.2 Results

Tables 2 and 3 present an excerpt of the mappings computed automatically by
RAVEN. The elements of the stable matching computed from these mapping
were used as initial configuration. The results of our experiments are shown in
Figures 3, 4 and 5. The first experiment, Diseases, proved to be the most difficult



Experiment Class Mapping

Diseases ds:diseases→dbp:Disease∗

ds:diseases→yago:Disease114070360

ds:diseases→yago:NeurologicalDisorders

ds:diseases→yago:TypesOfCancer

ds:diseases→yago:GeneticDisorders

ds:diseases→yago:BloodDisorders

ds:diseases→yago:TransmissibleSpongiformEncephalopathies

ds:diseases→yago:Syndromes

ds:diseases→yago:ChromosomeInstabilitySyndromes

ds:diseases→yago:PigmentDisorders

ds:diseases→yago:CongenitalDisorders

Drugs dbk:drugs→sd:drugs∗

dbk:drugs→sd:Offer

Side-Effects sd:sideEffects→ds:diseases∗

Table 2. Initial property and class mappings computed by RAVEN in our experiments.
The class mappings marked with an asterisk were returned by the stable matching
algorithm and used in the classifier.

Experiment Property Mapping

Diseases rdfs:label → dbp:name∗

rdfs:label → foaf:name

rdfs:label → rdfs:label

ds:name → dbp:name

ds:name → foaf:name∗

ds:name → rdfs:label

Drugs dbk:brandName → sd:drugName∗

dbk:genericName → sd:drugName

rdfs:label → sd:drugName

dbk:brandName → rdfs:label

Side-Effects rdfs:label → rdfs:label∗

rdfs:label → ds:name

sd:sideEffectName → rdfs:label

sd:sideEffectName → ds:name∗

Table 3. Initial property mappings computed by RAVEN in our experiments. The
property mappings marked with an asterisk were returned by the stable matching
algorithm and used in the classifier.



for RAVEN. Although the sameAs links between Diseasome and DBpedia allowed
our experiment to run without making use of the fallback solution, we had to
send 12 inquiries to the user when the learning rate was set to 0.1 to determine
the best configuration that could be learned by linear and Boolean classifiers.
Smaller learning rates led to the system having to send even up to 80 inquiries (η
= 0.01) to determine the best configuration. In this experiment linear classifiers
outperform Boolean classifiers in all setups by up to 0.8% F-score.
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(a) Linear classifier
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(b) Boolean classifier

Fig. 3. Learning curves on Diseases experiments.

The second and the third experiment display the effectiveness of RAVEN.
Although the fallback solution had to be used in both cases, our approach is
able to detect the right configuration with an accuracy of even 100% in the
Side-Effects experiment by asking the user no more than 4 questions. This is
due to the linking configuration of the user leading to two well-separated sets of
instances. In these cases, RAVEN converges rapidly and finds a good classifier
rapidly. Note that in these two cases, all learning rates in combination with both



linear and Boolean classifiers led to the same results (see Figures 4 and 5). The
configuration learned for the Side-Effects experiment is shown in Figure 6.
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Fig. 4. Learning curve of the Drugs experiments.
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Fig. 5. Learning curve of the Side-Effect experiment.

Although we cannot directly compare our results to other approaches as it is
the first active learning algorithm for learning link specifications, results reported
in the database area suggest that RAVEN achieves state-of-the-art performance.
The runtimes required for each iteration ensure that our approach can be used
in real-world interactive scenarios. In the worst case, the user has to wait for 1.4
seconds between two iterations as shown in Figure 7. The runtime for the com-



1 <?xml version="1.0" encoding="UTF -8"?>
2 <!DOCTYPE LIMES SYSTEM "limes.dtd">
3 <LIMES>
4 <PREFIX >
5 <NAMESPACE >http: //www.w3.org /1999/02/22 -rdf -syntax -ns#</NAMESPACE >
6 <LABEL>rdf</LABEL ></PREFIX >
7 <PREFIX >
8 <NAMESPACE >http: //www.w3.org /2000/01/rdf -schema#</NAMESPACE >
9 <LABEL>rdfs</LABEL></PREFIX >

10 <PREFIX >
11 <NAMESPACE >http://www.w3.org /2002/07/ owl#</NAMESPACE >
12 <LABEL>owl</LABEL ></PREFIX >
13 <PREFIX >
14 <NAMESPACE >http://www4.wiwiss.fu-berlin.de/sider/resource/sider/</NAMESPACE >
15 <LABEL>sd</LABEL></PREFIX >
16 <PREFIX >
17 <NAMESPACE >http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/
18 </NAMESPACE >
19 <LABEL>ds:</LABEL ></PREFIX >
20 <SOURCE >
21 <ID>sider</ID>
22 <ENDPOINT >http://www4.wiwiss.fu-berlin.de/sider/sparql </ENDPOINT >
23 <VAR>?x</VAR>
24 <PAGESIZE >-1</PAGESIZE >
25 <RESTRICTION >?x rdf:type sd:side_effects </RESTRICTION >
26 <PROPERTY >rdfs:label </PROPERTY >
27 <PROPERTY >sd:sideEffectName </PROPERTY >
28 </SOURCE >
29 <TARGET >
30 <ID>diseasome </ID>
31 <ENDPOINT >http://www4.wiwiss.fu-berlin.de/diseasome/sparql </ENDPOINT >
32 <VAR>?y</VAR>
33 <PAGESIZE >-1</PAGESIZE >
34 <RESTRICTION >?y rdf:type ds:diseases </RESTRICTION >
35 <PROPERTY >rdfs:label </PROPERTY >
36 <PROPERTY >ds:name </PROPERTY >
37 </TARGET >
38 <METRIC >
39 ADD (1.0083130081300813* Trigram(x.rdfs:label ,y.rdfs:label),
40 1.0083130081300813* Trigram(x.sd:sideEffectName ,y.ds:name ))
41 </METRIC >
42 <ACCEPTANCE >
43 <THRESHOLD >1.632</THRESHOLD >
44 <FILE>sideEffects.ttl</FILE>
45 <RELATION >owl:sameAs </RELATION >
46 </ACCEPTANCE >
47 <REVIEW >
48 <THRESHOLD >1.632</THRESHOLD >
49 <FILE>sideEffectsReview.ttl</FILE>
50 <RELATION >owl:sameAs </RELATION >
51 </REVIEW >
52 <EXECUTION >Simple </EXECUTION >
53 <GRANULARITY >4</GRANULARITY >
54 <OUTPUT >TURTLE </OUTPUT >
55 </LIMES>

Fig. 6. LIMES configuration learned for the Side-Effects experiment.



putation of the initial configuration depends heavily on the connectivity to the
SPARQL endpoints. In our experiments, the computation of the initial configu-
ration demanded 60 seconds when sameAs links existed between the knowledge
bases. When the fallback solution was used, the runtimes increased and reached
90 seconds.
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Fig. 7. Average runtimes for each iteration.

7 Conclusion and Future Work

In this paper, we presented RAVEN, an active learning approach tailored towards
semi-automatic link discovery on the Web of Data. We showed how RAVEN uses
stable matching algorithms to detect initial link configurations. We opted to use
the solution of the hospital residence problem (HR) without ties because of the
higher time complexity of the solution of HR with ties, i.e., L4, where L is the
size of the longest preference list, i.e., max(|R|, |H|). Still, our work could be
extended by measuring the effect of considering ties on the matching computed
by RAVEN. Our experimental results showed that RAVEN can compute accu-
rate link specifications (F-score between 90% and 100%) by asking the user to
classify a very small number of positive and negative examples (between 4 and
12 for a learning rate of 0.1). Our results also showed that our approach can be
used in an interactive scenario because of LIMES’ time efficiency, which allowed
to compute new links in less than 1.5 seconds in the evaluation tasks. The ad-
vantages of this interactive approach can increase the quality of generated links
while reducing the effort to create them. The RAVEN algorithm as well as a
graphical user interface will be made available as open source within the SAIM6

framework.

6 http://saim.sf.net



In future work, we will explore how to detect optimal values for the threshold
factor κ automatically, for example, by using clustering approaches. In addition,
we will investigate the automatic detection of domain-specific metrics that can
model the idiosyncrasies of the dataset at hand. Another promising extension
to RAVEN is the automatic detection of the target knowledge base to even
further simplify the linking process, since users often might not even be aware of
appropriate linking targets (see [16] for research in this area). By these means,
we aim to provide the first zero-configuration approach to link discovery.
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