
DBpedia and the Live Extraction of Structured Data from Wikipedia

Mohamed Morsey, Jens Lehmann, Sören Auer, Claus Stadler and Sebastian Hellmann

Department of Computer Science, University of Leipzig,
Johannisgasse 26, 04103 Leipzig, Germany.

{morsey|lehmann|auer|cstadler|hellmann}@informatik.uni-leipzig.de

http://aksw.org

Abstract

Purpose – DBpedia extracts structured information from Wikipedia, interlinks it with
other knowledge bases and freely publishes the results on the Web using Linked Data and
SPARQL. However, the DBpedia release process is heavy-weight and releases are some-
times based on several months old data. DBpedia-Live solves this problem by providing a
live synchronization method based on the update stream of Wikipedia.
Design/methodology/approach – Wikipedia provides DBpedia with a continuous stream
of updates, i.e. a stream of recently updated articles. DBpedia-Live processes that stream on
the fly to obtain RDF data and stores the extracted data back to DBpedia. DBpedia-Live
publishes the newly added/deleted triples in files, in order to enable synchronization between
our DBpedia endpoint and other DBpedia mirrors.
Findings – During the realization of DBpedia-Live we learned, that it is crucial to process
Wikipedia updates in a priority queue. Recently-updated Wikipedia articles should have the
highest priority, over mapping-changes and unmodified pages. An overall finding is that
there is a plenty of opportunities arising from the emerging Web of Data for librarians.
Practical implications – DBpedia had and has a great effect on the Web of Data and be-
came a crystallization point for it. Many companies and researchers use DBpedia and its
public services to improve their applications and research approaches. The DBpedia-Live
framework improves DBpedia further by timely synchronizing it with Wikipedia, which is
relevant for many use cases requiring up-to-date information.
Originality/value – The new DBpedia-Live framework adds new features to the old
DBpedia-Live framework, e.g. abstract extraction, ontology changes, and changesets publi-
cation.
Keywords Knowledge Extraction, RDF, Wikipedia, Triplestore
Paper type Research Paper

1

2

1. Introduction

Wikipedia is one of the largest knowledge sources of mankind and the largest encyclopedia
on the Web with being the 7th most visited website according to alexa.com (in July 2011).
Wikipedia is created only by collaborative authoring of its users. Wikipedia is available
in more than 280 languages, and the English Wikipedia contains more than 3.5 million
articles (in July, 2011)a. However, despite its success there are also some issues and untapped
potential:

• the search capabilities of Wikipedia are limited to keyword matching,
• inconsistencies may arise due to the duplication of information on different pages

and in different Wikipedia language editions.

The main objective of DBpedia is to extract structured information from Wikipedia and
to make this information available on the emerging Web of Data. Over the past five years
the DBpedia knowledge base has turned into a crystallization point for this emerging Web
of Data. Several tools using the DBpedia knowledge bases have been built, e.g. DBpedia
Mobileb, Query Builderc, Relation Finder (Lehmann et al., 2007a), and Navigatord. It is
also used in a variety of commercial applications, for instance Muddy Boots, Open Calais,
Faviki, Zemanta, LODr, and TopBraid Composer (cf. (Lehmann et al., 2009)).

Despite this success, a disadvantage of DBpedia has been the heavy-weight release
process. Producing a DBpedia dataset release through the traditional dump-based extraction
requires manual effort and – since dumps of the Wikipedia database are created on a monthly
basis – DBpedia has never reflected the current state of Wikipedia. Hence, we extended the
DBpedia extraction framework to support a Live extraction, which works on a continuous
stream of updates from Wikipedia and processes that stream on the fly. It allows DBpedia
to be up-to-date with a minimal delay of only a few minutes. The rationale behind this
enhancement is that our approach turns DBpedia into a real-time editable knowledge base,
while retaining the tight coupling with Wikipedia. It also opens the door for an increased
use of DBpedia in different scenarios. For instance, a user may like to add to his/her
movie website a list of highest grossing movies produced in the current year. Due to the
live extraction process, this scenario becomes much more appealing, since the contained
information will be as up-to-date as Wikipedia instead of being several months delayed.

Overall, we make the following contributions:

• realization of the Java-based DBpedia-Live framework, which allows the continu-
ous extraction of up-to-date information from Wikipedia,
• addition of Wikipedia article abstract extraction capability to the extraction frame-

work,
• automatic re-extraction of information from articles which are affected by changes

ahttp://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
bhttp://beckr.org/DBpediaMobile/
chttp://querybuilder.dbpedia.org
dhttp://navigator.dbpedia.org

3

in the DBpedia ontology mapping,
• flexible low-priority re-extraction from pages, which have not been modified for a

longer period of time – this allows changes in the underlying extraction framework,
which potentially affect all Wikipedia pages, while still processing the most recent
Wikipedia changes,
• regular publication of extraction deltas for update propagation/synchronization

with DBpedia-Live mirrors,
• provisioning of a synchronization tool, which downloads those deltas and updates

a DBpedia-Live mirror accordingly, in order to keep it in sync with the main
DBpedia-Live instance.

The paper is structured as follows: In Section 2, we give a brief introduction to the
Semantic Web technologies. In Section 3 we give an overview on the DBpedia framework
and its extractors in general. In Section 4 we describe the system architecture of DBpedia-
Live and discuss each component in detail. The ontology engineering process is introduced
in Section 5. In Section 6 we present the new features of the new framework and in Section 7
we outline how librarians can benefit from DBpedia. Eventually, related work is presented
in Section 8 and we conclude in Section 9 with an outlook on future work.

2. Semantic Web Technologies

There are quite a few different definitions of the concept Semantic Web. Tim Berners-Lee,
one of the inventors of the Semantic Web idea, defines it as ”The Semantic Web is not a
separate Web but an extension of the current one, in which information is given well-defined
meaning, better enabling computers and people to work in cooperation“ (Berners-Lee et al.,
2001). According to the World Wide Web consortium (W3C) the concept can be defined
as ”Semantic Web is the idea of having data on the Web defined and linked in a way that it
can be used by machines not just for display purposes, but for automation, integration, and
reuse of data across various applications.” (W3C Semantic Web Activity, 2009). In order to
achieve this vision several technologies were developed and standardized. These include
the Resource Description Framework (RDF), Uniform Resource Identifiers (URIs) as well
as vocabulary, schema and ontology languages built on top of them such as RDF-Schema,
OWL and SKOS. More details about Semantic Web Technologies can be found in (Yu,
2007).

2.1. Resource Description Framework (RDF)

RDF is a knowledge representation language for describing arbitrary resources such as Web
resources, entities and general concepts. RDF is the main building block of the Semantic
Web, and it is for the Semantic Web what HTML is for the conventional Web. RDF has
several basic elements, namely resources (also called entities), properties (also predicates or
roles), and statements (also triples or facts).

Resources comprise any concrete or abstract entities, e.g. a book or a person. Every
resource is identified by a Uniform Resource Identifier (URI) which is guaranteed to be

4

Subject Predicate Object

dbpedia:William_Shakespeare dbp:birthPlace "Stratford-upon-Avon, Warwickshire, England"
dbpedia:William_Shakespeare dbp:dateOfBirth "April 1564"
dbpedia:William_Shakespeare dbp:occupation "Playwright, poet, actor"
dbpedia:William_Shakespeare dbpo:child dbpedia:Judith_Quiney
dbpedia:Judith_Quiney dbp:spouse "Thomas Quiney"

Table 1: Sample RDF statements.

globally unique, e.g. http://dbpedia.org/resource/William_Shakespeare.
Properties are specific resources which can be used to describe attributes or relations

of other resources. For instance, the property http://dbpedia.org/ontology/Person/
height identifies the height of a human being.

Statements are used to describe properties of resources in the format subject, predicate,
object. According to the RDF data model all three components of a triple can be resources
(i.e. URIs), subject and object can also be blank nodes (i.e. unnamed entities) and objects
can also be literals consisting of a data value and optionally an associated a datatype or
language tag. For example:

<http://dbpedia.org/resource/William_Shakespeare>

<http://dbpedia.org/property/birthPlace>

"Stratford-upon-Avon, Warwickshire, England" .

This RDF statement simply says ”The subject identified by http://dbpedia.org/
resource/William_Shakespeare has the property identified by http://dbpedia.
org/property/birthPlace, whose value is equal to "Stratford-upon-Avon, Warwick-
shire, England"”. Table 1 shows more RDF statements about William Shakespeare. The
URIs are abbreviated with namespace prefixese.

2.2. RDF Serialization Formats

There are several formats for serializing RDF data. A simple text format is the N-Triples
format (Grant and Beckett, 2004). Each RDF triple is written in a separate line and terminated
by a period ".". Typically files with N-Triples have the .nt extension. Figure 1 shows some of
the sample triples from Table 1 encoded in N-Triples format. There are also a number of other
RDF serialization formats such as the XML serialization RDF/XML, the text serialization
formats N3 and Turtle, which are very similar to the N-Triples format and at last the RDFa
serialisation, which allows to integrate RDF into HTML.

2.3. Ontology

The W3C defines an ontology as follows: ”An ontology defines the terms used to describe
and represent an area of knowledge.” (Heflin, 2004). Figure 2 shows an excerpt of the

ehttp://prefix.cc provides a list of common prefixes

5

1 <http://dbpedia.org/resource/William_Shakespeare >
<http://dbpedia.org/property/dateOfBirth > "April 1564" .

2 <http://dbpedia.org/resource/William_Shakespeare >
<http://dbpedia.org/ontology/child>
<http://dbpedia.org/resource/Judith_Quiney > .

Figure 1: Sample N-Triples format.

Person

Athlete Artist...

SoccerPlayer ... TennisPlayer Actor Writer...

Work

MusicalWorkBook ...

authorLegend
Subclass Superclass
Property :

Figure 2: Excerpt of the DBpedia ontology.

DBpedia Ontology. This ontology says that there is a class called ”Writer” which is a
subclass of ”Artist”, which is in turn a subclass of ”Person”. William Shakespeare, and Dan
Brown are considered instances of the class ”Writer”. Note that there is a property relating
an instance of the class ”Work” to an instance of the class ”Person”. For instance, the novel
titled ”The Lost Symbol” is an instance of class ”Work” and related via property ”author” to
its author ”Dan Brown”.

2.4. Ontology Languages

Ontologies can be created using different ontology languages varying in expressiveness.
Examples are RDF Schema (RDFS) or the Web Ontology Language (OWL). RDFS is a rela-
tively simple language one can use to create a vocabulary for describing classes, subclasses,
and properties of RDF resources; it is a W3C recommendation (Brickley and Guha, 2004).
Figure 3 shows a part of our ontology from Figure 2 expressed in OWL+N3 syntax. The
Web Ontology Language (OWL) is also a W3C recommendation (Bechhofer et al., 2004)
and builds on RDFS, but additionally allows to express more complex relationships. For
example, OWL allows to construct new classes using set operators or property restrictions.
Thus implicit information can be represented and revealed later on using an OWL reasoner.
There are several OWL dialects balancing differently between expressiveness and reasoning
complexity.

2.5. SPARQL Query Language for RDF

SPARQL stands for SPARQL Protocol and RDF Query Language. It is used to ask queries
against RDF graphs. A SPARQL processor finds sets of triples in the RDF graph that

6

1 dbo:Writer rdf:type owl:Class .
2 dbo:Writer rdfs:subClassOf dbo:Artist .
3 dbo:author rdf:type owl:ObjectProperty .

Figure 3: RDFS representation of a part of our ontology in Turtle format. Turtle is more
compact than N-Triples, e.g. by allowing to use prefixes such as dbo, rdf and rdfs in this
example (see http://prefix.cc for the full namespaces).

1 PREFIX dbp: <http://dbpedia.org/property/>
2 PREFIX dbpedia: <http://dbpedia.org/resource/>
3 PREFIX dbo: <http://dbpedia.org/ontology/>
4 SELECT ?spouse WHERE {
5 dbpedia:William_Shakespeare dbo:child ?child.
6 ?child dbp:spouse ?spouse.
7 }

Figure 4: SPARQL query to get the spouse of Shakespeare’s child.

match to the required pattern. The results of SPARQL queries can be result sets or RDF
graphs (Prud’hommeaux and Seaborne, 2008). For instance, assume that we want to ask the
query ”Who is the spouse of William Shakespeare’s child?”. Figure 4 shows how this query
can be expressed in SPARQL.

2.6. Triplestore

A triplestore is a software program capable of storing and indexing RDF data, in order to
enable querying this data efficiently. Most triplestores support the SPARQL query language
for querying RDF data. Virtuoso (Erling and Mikhailov, 2007), Sesame (Broekstra et al.,
2002), and BigOWLIM (Bishop et al., 2011) are typical examples of triplestores. DBpedia
is using Virtuoso as the underlying triplestore.

3. Overview on DBpedia

The core of DBpedia consists of an infobox extraction process, which was first described
in (Auer and Lehmann, 2007). Infoboxes are templates contained in many Wikipedia articles.
They are usually displayed in the top right corner of articles and contain factual information
(cf. Figure 5). Infoboxes display the most relevant facts of a Wikipedia article in a table
often in the form of attribute-value pairs.

Wikipedia’s infobox template system has evolved over time with no central coordination.
In other words, different communities use different templates to describe the same type
of things (e.g. infobox_city_japan, infobox_swiss_town and infobox_town_de).
Moreover, different infobox templates use different names to denote the same attribute (e.g.

7

birthplace and placeofbirth). Attribute values are also expressed using a wide range of
different formats and units of measurement (e.g. height = {{height|ft=5|in=7}} and
height = {{height|m=1.70}}). We have overcome that obstacle by using two different
extraction approaches operating in parallel: A generic approach which aims at wide coverage
and a mapping-based approach which aims at better data quality.

3.1. Generic versus Mapping-based Infobox Extraction

Generic Infobox Extraction. The generic infobox extraction approach processes an in-
fobox as follows: A DBpedia URI is created from the Wikipedia article URL the infobox
is contained in. This URI is subsequently used as the subject for all extracted triples. For
instance, the URL of the Wikipedia article http://en.wikipedia.org/wiki/William_
Shakespeare is used to create the resource http://dbpedia.org/resource/William_
Shakespeare, which is subsequently used as the subject. The predicate URI is created
by concatenating the namespace http://dbpedia.org/property/ with the name of the
infobox attribute. For example, the Wikipedia attribute birthplace results in the property
http://dbpedia.org/property/birthplace. Objects are created from the attribute
values. Those values are pre-processed and converted into RDF to obtain suitable value
representations. For instance, internal MediaWiki links are converted to DBpedia URI
references, lists are detected and represented accordingly, units are detected and converted
to standard datatypes. The main advantage of that approach is that it can cover all infobox
types along with their attributes. Its drawback is that synonymous, i.e. equivalent attribute
names are not resolved. This makes writing queries against generic infobox data rather
complex.

Mapping-based Infobox Extraction. In order to overcome the problems of synonymous
attribute names and multiple templates being used for the same type of things, we mapped
Wikipedia templates to an ontology. The ontology was created manually by arranging the
341 most commonly used infobox templates within the English edition of Wikipedia into
a subsumption hierarchy consisting of 314 classes and then mapping 2350 attributes from
within these templates to 1425 ontology properties. The property mappings also define
fine-grained rules on how to parse infobox values and define target datatypes, which help the
parsers to process attribute values. For instance, if a mapping defines the target datatype to
be a list of links, the parser will ignore additional text that might be present in the attribute
value. The ontology currently uses 376 different datatypes. Deviant units of measurement are
normalized to one of these datatypes. Instance data within the infobox ontology is therefore
cleaner and better structured than data that is generated using the generic extraction approach.
We will discuss the DBpedia ontology in more detail in Section 5.

3.2. DBpedia Extractors

A DBpedia extractor is an executable module, responsible for extracting a specific piece of
data from a Wikipedia article. For instance, the abstract extractor extracts the abstract of a
Wikipedia article, i.e. the text before the table of contents of that article.

8

{{Infobox settlement
| official_name = Algarve
| settlement_type = Region
| image_map = LocalRegiaoAlgarve.svg
| mapsize = 180px
| map_caption = Map showing Algarve

Region in Portugal
| subdivision_type = [[Countries of the

world|Country]]
| subdivision_name = {{POR}}
| subdivision_type3 = Capital city
| subdivision_name3 = [[Faro, Portugal|Faro]]
| area_total_km2 = 5412
| population_total = 410000
| timezone = [[Western European

Time|WET]]
| utc_offset = +0
| timezone_DST = [[Western European

Summer Time|WEST]]
| utc_offset_DST = +1
| blank_name_sec1 = [[NUTS]] code
| blank_info_sec1 = PT15
| blank_name_sec2 = [[GDP]] per capita
| blank_info_sec2 = €19,200 (2006)
}}

Figure 5: MediaWiki infobox syntax for Algarve (left) and rendered infobox (right).

Currently, the framework has 19 extractors which process the following types of
Wikipedia content:

• Labels. All Wikipedia articles have a title, which is used as an rdfs:label for the
corresponding DBpedia resource.
• Abstracts. We extract a short abstract (first paragraph, represented by using
rdfs:comment) and a long abstract (text before a table of contents, using the
property dbpedia:abstract) from each article.
• Interlanguage links. We extract links that connect articles about the same topic

in different language editions of Wikipedia and use them for assigning labels and
abstracts in different languages to DBpedia resources.
• Images. Links pointing at Wikimedia Commons images depicting a resource are

extracted and represented by using the foaf:depiction property.
• Redirects. In order to identify synonymous terms, Wikipedia articles can redirect

to other articles. We extract these redirects and use them to resolve references
between DBpedia resources.
• Disambiguation. Wikipedia disambiguation pages explain the different meanings

of homonyms. We extract and represent disambiguation links by using the predicate
dbpedia:wikiPageDisambiguates.
• External links. Articles contain references to external Web resources which we

represent by using the DBpedia property dbpedia:wikiPageExternalLink.
• Page links. We extract all links between Wikipedia articles and represent them by

using the dbpedia:wikiPageWikiLink property.
• Wiki page. Links a Wikipedia article to its corresponding DBpedia resource, e.g.

9

(<http://en.wikipedia.org/wiki/Germany>
<http://xmlns.com/foaf/0.1/primaryTopic>

<http://dbpedia.org/resource/Germany>.).
• Homepages. This extractor obtains links to the homepages of entities such as

companies and organizations by looking for the terms homepage or website within
article links (represented by using foaf:homepage).
• Geo-coordinates. The geo-extractor expresses coordinates by using the Basic Geo

(WGS84 lat/long) Vocabularyf and the GeoRSS Simple encoding of the W3C
Geospatial Vocabularyg. The former expresses latitude and longitude components
as separate facts, which allows for simple areal filtering in SPARQL queries.
• Person data. It extracts personal information such as surname, and birth date.

This information is represented in predicates such as foaf:surname, and
dbpedia:birthDate.
• PND. For each person, there is a record containing his name, birth and occupation

connected with a unique identifier, which is the PND (Personennamendatei) number.
PNDs are published by the German national libraryh. A PND is related to its
resource via dbpedia:individualisedPnd.
• SKOS categories. It extracts information about which concept is a category and

how categories are related using the SKOS Vocabularyi.
• Page ID. Each Wikipedia article has a unique ID. This extractor extracts that ID

and represents it using dbpedia:wikiPageID.
• Revision ID. Whenever a Wikipedia article is modified, it gets a new Revision ID.

This extractor extracts that ID and represents it using
dbpedia:wikiPageRevisionID.
• Category label. Wikipedia articles are arranged in categories, and this extractor

extracts the labels for those categories.
• Article categories. Relates each DBpedia resource to its corresponding categories.
• Infobox. It extracts all properties from all infoboxes

as described. The extracted information is represented using properties in the
http://dbpedia.org/property/ namespace. The names of these properties
reflect the names of the attributed of Wikipedia infoboxes without any alterations
(unmapped).
• Mappings. It extracts structured data based on manually-created mappings of

Wikipedia infoboxes to the DBpedia ontology. First, it loads all infobox mappings
defined for the required languages, DBpedia-Live supports English language only
at the moment, from the mappings wiki. The mappings wiki is available at http:
//mappings.dbpedia.org. It then extracts the value of each Wikipedia property
defined for that type of infobox, and generates an appropriate triple for it, based on

fhttp://www.w3.org/2003/01/geo/
ghttp://www.w3.org/2005/Incubator/geo/XGR-geo/
hhttp://www.d-nb.de/eng/standardisierung/normdateien/pnd.htm
ihttp://www.w3.org/2004/02/skos/

10

mappings. We will explain DBpedia mappings, and mappings wiki in Section 5.

Subsequently, DBpedia has turned into the central knowledge base within the Linking
Open Data Initiative (see also (Auer et al., 2008)). It has been interlinked with other
knowledge bases such as Geonames, EuroStat, the CIA World Factbook, Freebase, and
OpenCyc. The collection of this information and its free availability via Linked Data and
SPARQL have attracted wide attention within and beyond the Semantic Web community.

3.3. Dump-Based Extraction

As mentioned in Section 1, the DBpedia extraction framework works in either dump-based
or live mode. The Wikipedia maintainers publish SQL dumps of all Wikipedia editions on
a monthly basis. We regularly create new DBpedia versions with the dumps of more than
80 languages. The dump-based extraction uses the Database Wikipedia page collection as
the source of article texts and generates N-Triples files as output. The resulting knowledge
base is made available as Linked Data, for downloadj, and via DBpedia’s main SPARQL
endpointk. (Lehmann et al., 2009) describes the dump-based release process in detail.

One of the downsides of the dump-based extraction is, that generating new dumps still
requires manual efforts and individual steps and processes such as initiating the dump,
reviewing the output, updating the website and notifying OpenLinkl about the new release.
Although some parts of this process could potentially be improved by a better automatization,
the whole process still takes a lot of time (about 2 days hours to generate the English dump,
an additional week to generate abstracts, plus several more days for the reviewing and
publishing). An even greater downside is, however, that it is nearly impossible to add fixes
and improvements to the dump files once they are published: Even if at one point in time,
a set of triples in one of the dump files was changed, these changes would be overridden
as soon as a new dump is generated. Furthermore, such a patching system would have to
handle difficult co-evolution and syncing scenarios and thus yield further problems, such as
how to handle patches that become outdated when the source articles change.

In contrast, the live extraction avoids these problems, as the dataset is always up to date.
Improvements and fixes can be made by editing the corresponding articles, mappings, and
ontology pages.

4. Live Extraction Framework

In this section, we present the design of the DBpedia-Live extraction framework and the
new features added to it.

A prerequisite for being able to perform live extraction is an access to changes made in
Wikipedia. The Wikimedia foundation kindly provided us access to their update stream, the

jhttp://dbpedia.org/downloads
khttp://dbpedia.org/sparql
lOpenLink is hosting the public SPARQL-endpoint for the DBpedia dumps http://www.openlinksw.com/

11

Wikipedia OAI-PMH m live feed. The protocol allows to pull updates in XML via HTTP. A
Java component, serving as a proxy, constantly retrieves new updates and feeds the DBpedia
framework. The proxy is necessary to decouple the stream from the framework to simplify
maintenance of the software. It also handles other maintenance tasks such as the removal of
deleted articles and it processes the new templates, which we will introduce in Section 6.
The live extraction workflow uses this update stream to extract new knowledge upon relevant
changes in Wikipedia articles.

4.1. General System Architecture

The general system architecture of DBpedia-Live is depicted in Figure 6. The main compo-
nents of DBpedia-Live system are as follows:

Figure 6: General DBpedia-Live system architecture.

• Local Wikipedia: We have installed a local Wikipedia that will be in synchro-
nization with Wikipedia. The Open Archives Initiative Protocol for Metadata
Harvesting (OAI-PMH) (Lagoze et al., 2008) enables an application to get a con-
tinuous stream of updates from a wiki. OAI-PMH is also used to feed updates into
DBpedia-Live Extraction Manager.
• Mapping Wiki: DBpedia mappings can be found at the MediaWiki instance http:
//mappings.dbpedia.org. We can also use OAI-PMH to get a stream of updates
in DBpedia mappings. Basically, a change of mapping affects several Wikipedia
pages, which should be reprocessed. We will explain mappings in more detail in
Section 5.
• DBpedia-Live Extraction Manager: This component is the actual DBpedia-Live

extraction framework. When there is a page that should be processed, the framework

mOpen Archives Initiative Protocol for Metadata Harvesting, cf. http://www.mediawiki.org/wiki/
Extension:OAIRepository

12

Figure 7: Overview of DBpedia-Live Extraction framework.

applies the extractors on it. After processing a page, the newly extracted triples are
inserted into the backend triplestore (Virtuoso), overwriting the old triples. The
newly extracted triples are also written as N-Triples file and compressed. Other
applications or DBpedia-Live mirrors that should always be in synchronization with
our DBpedia-Live can download those files and feed them into its own triplestore.
The extraction manager is discussed in more detail below.

4.2. Extraction Manager

Figure 7 gives a detailed overview of the DBpedia knowledge extraction framework. The
main components of the framework are:

• PageCollections which are an abstraction of local or remote sources of Wikipedia
articles,
• Destinations that store or serialize extracted RDF triples,
• Extractors which turn a specific type of wiki markup into triples,
• Parsers which support the extractors by determining datatypes, converting values

between different units and splitting markups into lists.
• ExtractionJob groups a page collection, extractors and a destination into a work-

flow.
• The core of the framework is the Extraction Manager which manages the process

of passing Wikipedia articles to the extractors and delivers their output to the
destination. The Extraction Manager also handles URI management and resolves

13

redirects between articles.

In live extraction mode, article texts are accessed via the LiveWikipedia page collection,
which obtains the current version of the article, which was preprocessed by the Java proxy
from the OAI-PMH stream. The content is comprised of the current Wikisource code,
language (English only at the moment), an OAI identifier and a page revision idn. The
SPARQL-Update Destination deletes existing triples and inserts new ones into the target
triplestore. According to our measurements, about 1.4 article pages are updated each second
on Wikipedia. This amounts to 120,000 page updates per day and a maximum processing
time of 0.71s per page for the live extraction framework. Currently, the framework can
handle up to 1.8 pages per second on a 2.8 GHz machine with 6 core CPUs (this includes
consumption from the stream, extraction, diffing and loading the triples into a Virtuoso
triplestore, and writing the updates into compressed files)o. Performance is one of the major
engineering hurdles we had to take in order to be able to deploy the framework. The time lag
for DBpedia to reflect Wikipedia changes lies between one and two minutes. The bottleneck
here is the update stream, since changes normally need more than one minute to arrive from
Wikipedia.

Apart from performance, another important problem is to identify which triples have to
be deleted and re-extracted upon an article change. DBpedia contains a “static” part, which is
not affected by the live extraction framework. This includes links to other knowledge bases,
which are manually updated as well as the YAGOp and Umbelq class hierarchies, which
can not be updated via the English Update Stream. We store the structure of those triples
using a SPARQL graph pattern. Those static triples are stored in a separate graph. All other
parts of DBpedia are maintained by the extraction framework. We redesigned the extractors
in such a way that each generates triples with disjoint properties. Each extractor can be in
one of three states: active, keep, and purge. Depending on the state when a Wikipedia page
is changed, the triples extracted by this extractor are either updated (active), not modified
(keep), or removed (purge).

In order to decide which triples were extracted by an extractor, and also to identify the
triples that should be replaced we use an RDB (relational database) assisted method, which
is described in more detail in (Stadler et al., 2010). We create an RDB table consisting of 3
fields, namely page_id, resource_uri, and serialized_data. Page_id is the unique ID of the
Wikipedia page. Resource_uri is the URI of DBpedia resource representing that Wikipedia
article in DBpedia. Serialized_data is the JSON representation of all extracted triples. It
is worth noting here that we store the extractor responsible for each group of triples along
with those triples in that field. Whenever a Wikipedia page is edited, the extraction method
generates a JSON object holding information about each extractor and its generated triples.
After serialization of such an object, it will be stored in combination with the corresponding
page identifier. In case a record with the same page identifier already exists in this table,

nsee here for an example http://en.wikipedia.org/wiki/Special:Export/Algarve
osee current statistics at http://live.dbpedia.org/livestats
phttp://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html
qhttp://fgiasson.com/blog/index.php/2008/09/04/exploding-dbpedias-domain-using-umbel/

14

this old JSON object and the new one are compared. The results of this comparison are two
disjoint sets of triples which are used on the one hand for adding statements to the DBpedia
RDF graph and on the other hand for removing statements from this graph.

We had to make a number of further changes within the DBpedia extraction framework
in order to support live extraction.

For instance, parsing article abstracts properly requires the resolution of templates,
as described in Section 6.1. This can be done using the MediaWiki API. However, using
Wikipedia directly would cause a great load on their servers, which would most likely result
in an IP ban. Therefore, we use a local MediaWiki instance, which is a mirror of the English
Wikipedia (synchronized via the OAI update stream).

In general, all parts of the DBpedia framework, which relied on static databases, files
etc., required to be exchanged so that no user interaction is required. Also, the framework
had to be refactored to be language independent to make it compatible to future deployment
on language specific DBpedia versions such as the Greek or German DBpedia r.

5. Wiki-Based Ontology Engineering

Since the core of DBpedia is the information contained in infoboxes, they are the most
interesting target for the extraction of ontological knowledge. Each infobox is mapped to a
class in the DBpedia ontology and each attribute in the infobox is mapped to a property. We
keep DBpedia ontology and mappings externally in another wiki, which is the Mappings-
Wiki. Details about this can be found in (Hellmann et al., 2009; Lehmann et al., 2009). We
provide a brief description in this paper, since the mapping wiki is also used in DBpedia-
Live. Through this wiki, a DBpedia user can add more ontology classes, control ontology
classes hierarchy. A DBpedia user can also change mappings, i.e. change the relation
between an infobox and its corresponding ontology class and/or an infobox property and its
corresponding ontology property.

Figure 8 indicates a sample mapping for infobox of a book. This figure indicates only a
subset of mappings as there are more properties associated with that type of infobox. As
indicated in the figure this infobox is mapped to Book ontology class in DBpedia. Infobox
property “name” is mapped to DBpedia property “foaf:name”, whereas infobox property
“translator” is mapped to DBpedia property “translator” in DBpedia namespace.

5.1. DBpedia Ontology

The DBpedia ontology is based on OWL and forms the structural backbone of DBpedia. It
describes classes e.g. writer, musical work, and book. It also describes properties e.g. birth
place, running time, and author.

The DBpedia ontology wiki can be found at http://mappings.dbpedia.org. In
order for users to be able to edit the mappings wiki, they should register themselves first.
Afterwards, they should contact DBpedia maintainers to get editor rights on that mappings
wiki.

rhttp://de.dbpedia.org

15

Figure 8: Mapping for infobox of a book.

Using that wiki for ontology engineering has several advantages:

• enables any DBpedia user, with little knowledge about wiki scripting, to help
DBpedia maintainers in extending and enhancing the ontology.
• enables users to add mapping for other languages, e.g. French, with ease.
• DBpedia-Live can get a stream of updates as it does with Wikipedia itself, which

enables detecting and reprocessing pages affected by a mapping change. We will
explain that process in more detail in Section 6.2.

5.2. DBpedia Knowledge Base

DBpedia knowledge base for the English language, on which DBpedia-Live depends,
currently has around 190 million triples. The main advantage of DBpedia knowledge base is
that it covers diverse domains, including books, writers, musicians, journalists and many
others. Currently DBpedia-Live covers around 3.7 million entities, i.e. 3.7 million articles
about different aspects including writers, books, musicians, etc. Most Wikipedia articles
contain images, the links to those images are conveyed to DBpedia. DBpedia contains more
than 700,000 links to images, and more than 6.7 million links to external web pages.

16

Ontology Class No. of Instances Sample Properties

Person 375916 birthName, birthDate, citizenship
Artist 45814 academyAward, associatedAct, field

Actor 15216 arielAward, geminiAward, nationalFilmAward
Writer 11634 notableWork
MusicalArtist 10797

Journalist 1809
Athlete 140282 club, debutTeam, formerTeam

SoccerPlayer 54369 appearancesInLeague, goalsInLeague, youthYears
TennisPlayer 1971 careerPrizeMoney

Work 289367 author, completionDate, license
Film 59802 cinematography, editing, imdbId
MusicalWork 145532 artist, recordDate, recordedIn

Album 104482 compiler, longtype, review
Song 4914 trackNumber

Book 23032 coverArtist, isbn, mediaType
Magazine 2765 editorTitle, issn, previousEditor
Newspaper 4064 associateEditor, chiefEditor, sisterNewspaper
Play 108 characterInPlay, ibdbId, premiereDate
Website 2247

Organisation 145549 affiliation, chairperson, endowment
EducationalInstitution 37741 alumni, dean, educationSystem

College 78 sisterCollege
Library 445 isil
School 24581 actScore, administrator, ageRange
University 12648 campus, numberOfDoctoralStudents, provost

Table 2: Common DBpedia classes, number of instances of each one, and some properties
for it.

Table 2 shows some ontology classes that are interesting to librarians. For instance,
DBpedia knowledge base contains data about more than 23,000 books in various disciplines.
It also decscribes more than 400 libraries and more than 12,000 universities.

6. New Features of DBpedia-Live

The old php-based framework is deployed on one of OpenLink’s servers and currently has a
SPARQL endpoint at http://dbpedia-live.openlinksw.com/sparql.

In addition to the migration to Scala and Java, the new DBpedia-Live framework has the
following new features:

(1) Abstract extraction: The abstract of a Wikipedia article is the first few paragraphs of that
article. The new framework has the ability to cleanly extract the abstract of an article.

(2) Mapping-affected pages: Upon a change in mapping, the pages affected by that mapping
should be reprocessed and their triples should be updated to reflect that change.

(3) Updating unmodified pages: Sometimes a change in the system occurs, e.g. a change in
the implementation of an extractor. This change can affect many pages even if they are
not modified. In DBpedia-Live, we use a low-priority queue for such changes, such that
the updates will eventually appear in DBpedia-Live, but recent Wikipedia updates are
processed first.

(4) Publication of changesets: Upon modifications old triples are replaced with the updated
triples. Those added and/or deleted triples are also written as N-Triples files and then

17

compressed. Any client application or DBpedia-Live mirror can download those files
and integrate and, hence, update a local copy of DBpedia. This enables that application
to be always in synchronization with our DBpedia-Live.

In the following sections, we will describe each feature in detail.

6.1. Abstract Extraction

The abstract extractor extracts two types of abstracts:

(1) Short abstract: is the first paragraph from a Wikipedia article and is represented in
DBpedia by rdfs:comment.

(2) Long abstract: is the whole text before the table of contents in an article, which is
represented by dbo:abstract.

The hurdle of abstract extraction is the resolution of templates. A template is a simple
sequence of characters that has a special meaning for Wikipedia. Wikipedia renders those
templates in a specific way.

The following example indicates a typical Wikipedia template

Example 6.1. {{convert|1010000|km2|sp=us}}

This templates tells Wikipedia that the area of some country is 1010000 square kilometers,
and when it is rendered, Wikipedia should display its area in both square kilometers, and
square miles. So, Wikipedia will render it as “1,010,000 square kilometers (390,000 sq mi)”.
DBpedia should behave similarly towards those templates.

In order to resolve those templates used in the abstract of the article, we installed a copy
of Wikipedia. The required steps to install a local copy of Wikipedia are:

(1) MySQL: Install MySQL server as back-end relational database for Wikipedia.
(2) SQL dumps: Download the latest SQL dumps for Wikipedia, which are freely available

at http://dumps.wikimedia.org/enwiki/.
(3) Clean SQL dumps: Those SQL dumps need some adjustment, before you can insert

them into MySQL. You can perform this adjustment by running “clean.sh”, which you
can download from the website containing the sourcecode, see Section 6.7.

(4) Import SQL dumps: You can now use the script called “import.sh”, which is also
available with the sourcecode.

(5) HTTP Server: Apache server should be installed, which will provide a front-end for
abstract extraction.

6.2. Mapping-Affected Pages

Whenever a mapping change occurs, some pages should be reprocessed. For example, in
Figure 8, if the template property called translator, which is mapped to DBpedia property
translator, is changed to another property, then all entities belonging to the class Book should
be reprocessed. Upon a mapping change, we identify the list of affected DBpedia entities,
along with IDs of their corresponding Wikipedia pages.

18

Basically, the DBpedia-Live framework has a priority-queue which contains all pages
waiting for processing. This priority-queue is considered the backbone of our framework as
several streams including the live-update stream, mapping-update stream, and unmodified-
pages stream, place the IDs of their pages in this queue. DBpedia-live consumes the contents
of that queue taking the priority of updates into account.

Specifically, IDs of pages fetched from the live update stream are placed in that queue
with the highest priority. The IDs of pages affected by a mapping change are also placed in
that queue but with lower priority.

6.3. Unmodified Pages

Naturally, there is a large variation of the update frequency of individual articles in Wikipedia.
If any change in the DBpedia extraction framework occurs, e.g. a modification of the
implementation of an extractor or an addition of a new extractor, this will not be a problem
for the frequently updated articles as it is likely that they will be reprocessed soon.

However, less frequently updated articles may not be processed for several months and
would, therefore, not reflect the current implementation state of the extraction framework.
To overcome this problem, we obtain the IDs of the pages which have not been modified
between one and three months ago, and place their IDs in our priority-queue. Those pages
have the lowest priority in order not to block or delay live extraction.

Since we use a local synchronized instance of the Wikipedia database, we can query
this instance to obtain the list of such articles, which have not been modified between one
and three months ago. Directing those queries against Wikipedia itself would place a too
high burden on the Wikipedia servers, because the number of unmodified pages can be very
large.

6.4. Changesets

Whenever a Wikipedia article is processed, we get two disjoint sets of triples. A set for
added triples, and another set for deleted triples. We write those 2 sets into N-Triples files,
compress them, and publish the compressed files on our server. If another triplestore wants
to synchronize with DBpedia-Live, it can just download those files, decompress them and
integrate them with its store.

The folder to which we publish the changesets has a specific structure. The folder
structure is as follows:

• The parent folder contains a folder for each year while running, e.g. 2010, 2011, 2012,
....
• The folder of a year contains a folder for each month passed while running, e.g. 1, 2, 3,

..., 12.
• The folder of a month contains a folder for each day passed while running, e.g. 1, 2, 3,

...., 28/29/30/31.
• The folder of a day contains a folder for each hour passed while running, e.g. 0, 1, 2,,

23.

19

• Inside the folder of an hour, we write the compressed N-Triples files with added or
removed, e.g. 000000.added.nt.gz and 000000.removed.nt.gz. This represents the 2
disjoint sets of added and/or removed triples.

To clarify that structure lets take that example:

Example 6.2. dbpedia_publish/2011/06/02/15/000000.added.nt.gz
and

dbpedia_publish/2011/06/02/15/000000.removed.nt.gz

This indicates that in year 2011, in 6th month of that year, 2nd day of that month, in hour
15, 2 files were written, one for added triples, and one for removed triples.

We also manage to produce a regular dump of all DBpedia triples monthly, i.e. we
generate an N-Triples file containing all triples from DBpedia. The benefit of that dump file
is that it makes the synchronization process between a local triplestore and our DBpedia-
Live endpoint significantly faster. For instance, if we have changeset files starting from
the begining of year 2011, and there is another triplestore that should be synchronized
with ours, then all changeset files, starting from dbpedia_publish/2011/01/01/000000
till the moment, must be downloaded and integrated. But, if we generate a dump
file in the begining of each month, then the user should only download the latest
dump file, load it to his/her Virtuoso triplestore, and start integration from that date.
So, for dump file dbpedia_2011_07_01.nt.bz2, the user can start integration from
dbpedia_publish/2011/07/01/000000, which is easier and faster.

6.5. Synchronization Tool

The synchronization tool enables a DBpedia-Live mirror to stay in synchronization with
our live endpoint. It downloads the changeset files sequentially, decompresses them and
integrates them with another DBpedia-Live mirror. As decscribed in Section 6.4, 2 files are
written, one for added triples, and the other for deleted ones. That tool, simply downloads
both of them, creates the appropriate INSERT/DELETE statement and executes it against the
triplestore.

An interested user can download this tool and configure it properly, i.e. configure the
address of his/her triplestore, login credentials for that triplestore, and so forth. Afterwards,
he/she can run it to synchronize that triplestore with ours.

6.6. Statistics about DBpedia-Live

According to our measurements, about 84 article pages in average are updated each minute
on Wikipedia. This amounts to 120,000 page updates per day. The DBpedia-Live framework
is able to process 108 articles in average per minute, which is sufficient to cover the rate of
updates in Wikipedia.

Since its official release, an increasing number of requests are sent to our DBpedia-Live
endpoint. Figure 9 indicates the number of requests sent to DBpedia-Live endpoint within
the last two monthes.

20

7/8/2011 14/8/2011 21/8/2011 28/8/2011 4/9/2011 11/9/2011 18/9/2011 25/9/2011

Day

0

10000

20000

30000

40000

50000

60000

70000

R
eq

ue
st
s

Figure 9: Number of requests sent daily to DBpedia-Live endpoint.

6.7. Important Pointers

• SPARQL-endpoint: The DBpedia-Live SPARQL-endpoint can be accessed at http:
//live.dbpedia.org/sparql.
• DBpedia-Live Statistics: Some simple statistics are provided upon extraction on http:
//live.dbpedia.org/livestats.
• Updates: The N-Triples files containing the updates can be found at http://live.
dbpedia.org/liveupdates.
• DBpedia-Live Sourcecode: http:

//dbpedia.hg.sourceforge.net/hgweb/dbpedia/extraction_framework.
• Synchronization Tool: http://sourceforge.net/projects/dbpintegrator/
files/.
• Dump files: http://live.dbpedia.org/dumps/.

7. How Can Librarians as well as DBpedia and Linked Data benefit from each
other?

DBpedia can be very beneficial for librarians as well as other users, since it comprises
structured information from Wikipedia and covers a variety of different domains. In the
following paragraphs we outline some directions how Librarians as well as DBpedia and
Linked Data can mutually benefit from each other.

Providing context information for bibliographic data. One feature of DBpedia is that
it provides a broad range of information about a vast variety of domains. In addition to
conventional library information systems which give the user only limited information about
books, authors and topics, DBpedia can provide more context information. For example,
library users could obtain more background information from DBpedia about authors, such
as their birth places, nationality or influences.

Curated and stable identifiers. DBpedia and Semantic Web in general depend on URIs,
which are guaranteed to be globally unique. This is beneficial as it enables the addition
of more facts about a specific entity. For instance, DBpedia contains some facts about
the publishing house ”Random House” which is identified by http://dbpedia.org/

21

resource/Random_House. A librarian can use this URI (either directly or by establishing
an owl:sameAs link) to add more facts about that publisher in order to increase the coverage
and quality of data available on the Web. Such a (re-)use of stable and curated identifiers
facilitates the integration of data and information between different libraries as well as
between libraries and other knowledge bases and applications.

Extract and publish structured (meta-)data for library content. Library databases con-
tain very accurate and valuable data about books, publishers, etc. This data can be extracted,
converted into RDF, stored in a knowledge base, and interlinked with other knowledge bases,
which results in a vast knowledge base about books, their authors and other bibliographic
data. One example of such an extracted and published database is the RDF version of
the Personennamendatei (PND)s, which is an authoritative source on persons being either
authors of books or discussed in books.
It is worth mentioning here that the article abstract is an important piece of metadata of
a Wikipedia article. The new DBpedia-Live framework enables the extraction of cleaner
abstracts, i.e. the templates contained in the article abstract are properly resolved.

Provide storage facilities for Linked Data. The more researchers use Linked Data and
semantic technologies, the more important it is to have providers of Data Web infrastructure.
A biomedical researcher who developed an ontology for the classification of diseases could
for example outsource the hosting and maintenance of the corresponding Linked Data
endpoint to his university library similar as the hosting of Web sites is already outsourced to
IT departments or specialized companies. Since in the case of ontologies and Linked Data
not only technical knowledge is required, but also expertise with regard to structuring and
representing knowledge, libraries could play an important role in this regard.

Support facilities for knowledge based authoring & collaboration. Libraries can pro-
vide the collaboration infrastructure for researchers and domain experts. Examples of such a
collaboration infrastructure are Semantic Wikis such as OntoWiki (Auer et al., 2007) and
Semantic MediaWiki (Krötzsch et al., 2006). In addition to supporting the collaboration Se-
mantic Wikis also serve Linked Data, SPARQL and other Data Web technologies. They can
be used to semantically structure information about a particular domain and to help domain
experts to collect and integrate data and information. An example of such an application
is the Professors Catalog (Riechert et al., 2010), where historians collaboratively created a
vast semantic, prosopographical knowledge base about professors working at Universität
Leipzig during its 600 years history.

Become linking hubs for the Data Web. When the accurate and comprehensive data
available in library databases is converted into knowledge bases and interlinked with other
information on the Web, library content can become a hub in the Web of Data. We think that
in particular the qualitative and comprehensive structured information available in library

shttp://www.gbv.de/wikis/cls/PND_in_RDF

22

information system represents a very attractive asset, which could ultimately make libraries
‘lighthouses’ in the Linked Data ‘ocean’.

Authoritative Linked Data for quality assessment. Librarians are experts in indexing
and metadata creation of books, authors, etc. Their experiences are of great importance in
Linked Data, as they can evaluate the accuracy of data of that domain. The reference data
created by libraries can also help to reveal problems that may exist in Linked Data, e.g.
incomplete or incorrect data, which thus helps to increase the data quality on the Web.

Hosting & maintenance of Linked Data exploration tools. Several tools are built to
enable normal users to explore and benefit from Linked Data available on the Web. An
example of such a tool is AutoSPARQL (Lehmann and Bühmann, 2011). AutoSPARQL
simplifies the SPARQL query creation process. The user can enter only keywords, which are
used to from the target query, e.g. books, Dan Brown. AutoSPARQL uses those keywords to
formulate the appropriate SPARQL query and executes it against the endpoint. It can also
display the generated SPARQL query to the user. Similar exploration and visualisation tools
are Relationship Finder (Lehmann et al., 2007b), Sig.ma t, Sparallax u, and Exhibit (Huynh
et al., 2007). Libraries can become competence centers for maintaining and explaining such
visualisation and exploration tools for end users.

Update propagation. The publication of changesets along with the synchronization tool,
described in Sections 6.4, and 6.5 respectively, enables the update propagation from our
endpoint to other DBpedia-Live mirrors. This feature can be of great importance in case
users(including librarians) want to maintain their own endpoints. This helps when they
mainly depend on their infrastructure, as it is much faster than depending on external
infrastructure.

8. Related Work

There are several projects, which aim at extracting semantic data from Wikipedia.

YAGO2: is an extension of the YAGO knowledge base (Suchanek et al., 2008). YAGO2
uses Wikipedia, Geonames, and WordNet as sources of data. The predecessor of YAGO2,
i.e. YAGO just used Wikipedia as its main source of data. It extracts several relations (e.g.
subClassOf, and type) mainly from the category pages of Wikipedia. Category pages are
lists of articles that belong to a specific category. For instance, William Shakespeare is in the
category English poets. These lists give candidates for entities (i.e. William Shakespeare),
candidates for concepts (IsA(William Shakespeare, Poet)), and candidates for relations (e.g.
isCitizenOf(William Shakespeare, England)). YAGO, then links the Wikipedia category
hierarchy to the WordNet hierarchy, in order to enhance its classification hierarchy (Suchanek
et al., 2008).

thttp://sig.ma/
uhttp://sparallax.deri.ie

23

YAGO2 is the new version of the YAGO project. It uses Geonames as an additional
source of data. YAGO2 introduces the integration of the spatio-temporal dimension. In
contrast to the original YAGO, the methodology of building YAGO2 (and also maintaining
it) is systematically designed top-down with the goal of integrating entity-relationship-
oriented facts with the spatial and temporal dimensions. Moreover, YAGO represent facts
in the form of subject-property-object triples (SPO triples) according to the RDF data
model. YAGO2 introduces a new spatio-temporally model, which represents facts in the
form of SPOTL tuples (i.e. SPO + Time + Location). This new knowledge representation
scheme is very beneficial. For example, with the old representation scheme a knowledge
base may store that a certain person is the president of a certain country, but presidents of
countries change. So, it is crucial to capture the time periods during which facts of this kind
actually happened (Hoffart et al., 2010). Both YAGO and YAGO2, however, do not focus on
extracting data from Wikipedia infoboxes.

KYLIN: is a project based also on Wikipedia, which aims at creating or completing
infoboxes by extracting information from the article text. KYLIN looks for classes of pages
with similar infoboxes, determines common attributes, creates training examples, learns
the extractors, and runs them on each page. Thus creating new infoboxes or completing
existing ones. It uses learning techniques to automatically fill in missing values in incomplete
infoboxes. There are several problems which may exist in an infobox, such as incompleteness
or inconsistency. For example, some infoboxes contain incomplete data which may, however,
exist in the article text, while some other infoboxes may contain data that contradicts with the
article text (Wu and Weld, 2007). Although both DBpedia, and KYLIN work on Wikipedia
infoboxes both have different objectives. DBpedia aims at extracting data from infoboxes
and converting them into semantic data, whereas KYLIN tries to fill the gaps that may exist
in some infoboxes.

Freebase: is a large collaborative knowledge base, which uses various sources of data
including Wikipedia and MusicBrainzv. It was originally developed by the software company
Metaweb, which was later acquired by Google. Basically, Freebase also extracted facts from
Wikipedia articles as initial content and which the users can later extend and revise (Bollacker
et al., 2008). Both DBpedia and Freebase use Wikipedia as a data source, but Freebase uses
it only as a starting point in a way that its users can modify the data, whereas DBpedia aims
to be closely aligned with Wikipedia.

9. Conclusion and Future Work

Due to the permanent update of Wikipedia articles, we also aim to update DBpedia accord-
ingly. We proposed a framework for instantly retrieving updates from Wikipedia, extracting
RDF data from them, and storing this data in a triplestore. Our new revision of the DBpedia-
Live extraction framework adds a number of features and particularly solves the following

vhttp://musicbrainz.org/

24

issues:

• MediaWiki templates in article abstracts are now rendered properly.
• Changes of mappings in the DBpedia mappings wiki are now retrospectively applied to

all potentially affected articles.
• Updates can now be propagated easily, i.e. DBpedia-Live mirrors can now get recent

updates from our framework, in order to be kept in sync.

Many users can benefit from DBpedia, not only computer scientists. We have pointed
out some directions how librarians and libraries can make use of DBpedia and how they
can become part of the emerging Web of Data. We see a great potential for libraries to
become centers of excellence in knowledge management on the Web of Data. As libraries
supported the knowledge exchange through books in previous centuries, they now have
the opportunity to extend their scope towards supporting the knowledge exchange through
structured data and ontologies on the Web of Data. Due to the wealth and diversity of
structured knowledge already available in DBpedia and other datasets on the Web of Data
many other scientists, e.g. in life sciences, humanities, or engineering, would benefit a lot
from such a development.

There are several directions in which we aim to extend the DBpedia-Live framework:
Support of other languages: Currently, the framework supports only the English

Wikipedia edition. We plan to extend our framework to include other languages as well.
The main advantage of such a multi-lingual extension is that infoboxes within different
Wikipedia editions cover different aspects of an entity at varying degrees of completeness.
For instance, the Italian Wikipedia contains more knowledge about Italian cities and villages
than the English one, while the German Wikipedia contains more structured information
about people than the English edition. This leads to an increase of the quality of extracted
data compared to knowledge bases that are derived from single Wikipedia editions. More-
over, this also helps in detecting inconsistencies across different Wikipedia and DBpedia
editions.

Wikipedia article augmentation: Interlinking DBpedia with other data sources makes it
possible to develop a MediaWiki extension that augments Wikipedia articles with additional
information as well as media items (e.g. pictures and audio) from these sources. For instance,
a Wikipedia page about a geographic location such as a city or a monument can be augmented
with additional pictures from Web data sources such as Flickr or with additional facts from
statistical data sources such as Eurostat or the CIA Factbook.

Wikipedia consistency checking: The extraction of different Wikipedia editions along
with interlinking DBpedia with external Web knowledge builds the base for detecting
inconsistencies in Wikipedia content. For instance, whenever a Wikipedia author edits an
infobox within a Wikipedia article, the new content of the infobox could be checked against
external data sources and information extracted from other language editions. Inconsistencies
could be pointed out along with proposals on how to solve these inconsistencies. In this
way, DBpedia can provide feedback to Wikipedia maintainers in order to keep Wikipedia
data more consistent, which eventually may also lead to an increase of the quality of data in

REFERENCES 25

Wikipedia.

Acknowledgments

We thank the people at Openlink software for their valuable support during the development
of DBpedia-Live. This work was supported by a grant from the European Union’s 7th
Framework Programme provided for the projects LOD2 (GA no. 257943) and LATC (GA
no. 256975).

References

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R. and Ives, Z. (2008), DBpedia:
A nucleus for a web of open data, in ‘Proceedings of the 6th International Semantic
Web Conference (ISWC)’, Vol. 4825 of Lecture Notes in Computer Science, Springer,
pp. 722–735.

Auer, S., Dietzold, S., Lehmann, J. and Riechert, T. (2007), OntoWiki: A tool for social,
semantic collaboration, in N. F. Noy, H. Alani, G. Stumme, P. Mika, Y. Sure and D. Vran-
decic, eds, ‘Proceedings of the Workshop on Social and Collaborative Construction of
Structured Knowledge (CKC 2007) at the 16th International World Wide Web Conference
(WWW2007) Banff, Canada, May 8, 2007’, Vol. 273 of CEUR Workshop Proceedings,
CEUR-WS.org.
URL: http://ceur-ws.org/Vol-273/paper_91.pdf

Auer, S. and Lehmann, J. (2007), What have Innsbruck and Leipzig in common? extracting
semantics from wiki content, in ‘Proceedings of the ESWC (2007)’, Vol. 4519 of Lecture
Notes in Computer Science, Springer, Berlin / Heidelberg, pp. 503–517.

Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L., Patel-
Schneider, P. F. and Stein, L. A. (2004), OWL Web Ontology Language Reference,
Technical report, World Wide Web Consortium.
URL: http://www.w3.org/TR/owl-ref/

Berners-Lee, T., Hendler, J. and Lassila, O. (2001), ‘The semantic web’, Scientific American
284(5), 34–43.
URL: http://www.scientificamerican.com/article.cfm?id=the-semantic-web

Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z. and Velkov, R. (2011),
‘OWLIM: A family of scalable semantic repositories’, Semantic Web 2(1), 33–42.
URL: http://dx.doi.org/10.3233/SW-2011-0026

Bollacker, K., Evans, C., Paritosh, P., Sturge, T. and Taylor, J. (2008), Freebase: a collab-
oratively created graph database for structuring human knowledge, in ‘SIGMOD ’08:
Proceedings of the 2008 ACM SIGMOD international conference on Management of
data’, ACM, New York, NY, USA, pp. 1247–1250.
URL: http://ids.snu.ac.kr/w/images/9/98/SC17.pdf

Brickley, D. and Guha, R. V. (2004), RDF Vocabulary Description Language
1.0: RDF Schema, Recommendation, World Wide Web Consortium (W3C).
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/.

26 REFERENCES

Broekstra, J., Kampman, A. and van Harmelen, F. (2002), Sesame: A generic architecture
for storing and querying RDF and RDF schema, in I. Horrocks and J. Hendler, eds,
‘Proceedings of the First Internation Semantic Web Conference’, number 2342 in ‘Lecture
Notes in Computer Science’, Springer Verlag, pp. 54–68.

Erling, O. and Mikhailov, I. (2007), RDF support in the virtuoso DBMS, in S. Auer, C. Bizer,
C. Müller and A. V. Zhdanova, eds, ‘CSSW’, Vol. 113 of LNI, GI, pp. 59–68.
URL: http://aksw.org/cssw07/paper/5_erling.pdf

Grant, J. and Beckett, D. (2004), RDF test cases, W3C recommendation, World Wide Web
Consortium.
URL: http://www.w3.org/TR/rdf-testcases/

Heflin, J. (2004), ‘Web ontology language
(owl) use cases and requirements’, World Wide Web Consortium, Recommendation
REC-webont-req-20040210. http://www.w3.org/TR/2004/REC-webont-req-20040210.

Hellmann, S., Stadler, C., Lehmann, J. and Auer, S. (2009), DBpedia live extraction, in
‘Proc. of 8th International Conference on Ontologies, DataBases, and Applications of
Semantics (ODBASE)’, Vol. 5871 of Lecture Notes in Computer Science, pp. 1209–1223.
URL:
http://svn.aksw.org/papers/2009/ODBASE_LiveExtraction/dbpedia_live_extraction_public.pdf

Hoffart, J., Suchanek, F. M., Berberich, K. and Weikum, G. (2010), YAGO2: a spatially and
temporally enhanced knowledge base from Wikipedia, Research Report MPI-I-2010-5-
007, Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken,
Germany.

Huynh, D. F., Karger, D. R. and Miller, R. C. (2007), Exhibit: lightweight structured data
publishing, in ‘Proceedings of the 16th international conference on World Wide Web’,
ACM, Banff, Alberta, Canada, pp. 737–746.
URL: http://portal.acm.org/citation.cfm?id=1242572.1242672

Krötzsch, M., Vrandečić, D. and Völkel, M. (2006), Semantic MediaWiki, in ‘The Semantic
Web - ISWC 2006’, Vol. 4273 of Lecture Notes in Computer Science, Springer, Heidelberg,
DE, pp. 935–942.
URL: http://dx.doi.org/10.1007/11926078_68

Lagoze, C., de Sompel, H. V., Nelson, M. and Warner, S. (2008), ‘The open archives
initiative protocol for metadata harvesting’, http://www.openarchives.org/OAI/
openarchivesprotocol.html.

Lehmann, J., Bizer, C., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R. and Hellmann, S.
(2009), ‘DBpedia - a crystallization point for the web of data’, Journal of Web Semantics
7(3), 154–165.
URL: http://jens-lehmann.org/files/2009/dbpedia_jws.pdf

Lehmann, J. and Bühmann, L. (2011), Autosparql: Let users query your knowledge base, in
‘Proceedings of ESWC 2011’.
URL: http://jens-lehmann.org/files/2011/autosparql_eswc.pdf

Lehmann, J., Schüppel, J. and Auer, S. (2007a), Discovering unknown connections - the
DBpedia relationship finder, in ‘Proceedings of the 1st SABRE Conference on Social

REFERENCES 27

Semantic Web (CSSW)’.
Lehmann, J., Schüppel, J. and Auer, S. (2007b), Discovering unknown connections - the

DBpedia relationship finder, in ‘Proceedings of 1st Conference on Social Semantic Web.
Leipzig (CSSW’07), 24.-28. September’, Vol. P-113 of GI-Edition of Lecture Notes in
Informatics (LNI), Bonner Köllen Verlag.
URL: http://www.informatik.uni-leipzig.de/ auer/publication/relfinder.pdf

Prud’hommeaux, E. and Seaborne, A. (2008), SPARQL query language for RDF, W3C
recommendation, W3C.
URL: http://www.w3.org/TR/rdf-sparql-query/

Riechert, T., Morgenstern, U., Auer, S., Tramp, S. and Martin, M. (2010), Knowledge
engineering for historians on the example of the catalogus professorum lipsiensis, in P. F.
Patel-Schneider, Y. Pan, P. Hitzler, P. Mika, L. Zhang, J. Z. Pan, I. Horrocks and B. Glimm,
eds, ‘Proceedings of the 9th International Semantic Web Conference (ISWC2010)’, Vol.
6497 of Lecture Notes in Computer Science, Springer, Shanghai / China, pp. 225–240.
URL: http://www.springerlink.com/content/n611284x31l1552p/

Stadler, C., Martin, M., Lehmann, J. and Hellmann, S. (2010), Update Strategies for DBpedia
Live, in G. T. W. G. A. Grimnes, ed., ‘Proc. of 8th International Conference on Ontologies,
DataBases, and Applications of Semantics (ODBASE)’, Vol. 699 of CEUR Workshop
Proceedings ISSN 1613-0073.
URL: http://CEUR-WS.org/Vol-699/Paper5.pdf

Suchanek, F. M., Kasneci, G. and Weikum, G. (2008), ‘Yago: A large ontology from
wikipedia and wordnet’, Journal of Web Semantics 6(3), 203–217.

W3C Semantic Web Activity (2009). http://www.w3.org/2001/sw/.
URL: http://www.w3.org/2001/sw/

Wu, F. and Weld, D. S. (2007), Autonomously semantifying wikipedia, in ‘CIKM ’07: Pro-
ceedings of the sixteenth ACM conference on Conference on information and knowledge
management’, ACM, New York, NY, USA, pp. 41–50.
URL: http://portal.acm.org/citation.cfm?id=1321440.1321449

Yu, L. (2007), Introduction to Semantic Web and Semantic Web services, Chapman &
Hall/CRC, Boca Raton, FL.

About the authors

Mohamed Morsey is PhD student at the University of Leipzig. He started his PhD in April
2010 in the "Agile Knowledge Engineering and Semantic Web" (AKSW) research group.
He obtained his M.Sc. in Computer Science from Ain Shams University in Cairo, Egypt
in 2006. His main interests are Semantic Web, Information Security, and Object Oriented
Analysis and Design. He is currently working in DBpedia project. Mohamed Morsey can be
contacted at: morsey@informatik.uni-leipzig.de

Dr. Jens Lehmann is a postdoctoral researcher at the University of Leipzig and research
visitor at the University of Oxford. He is leading the Machine Learning and Ontology
Engineering research group within the AKSW center. He obtained a PhD with grade summa
cum laude at the University of Leipzig in 2010 and a master degree in Computer Science

28 REFERENCES

from Technical University of Dresden in 2006. His research interests involve Semantic
Web, machine learning and knowledge representation. He is founder, leader or contributor
of several open source projects, including DL-Learner, DBpedia, LinkedGeoData, ORE,
and OntoWiki. He works/worked in several funded projects, e.g. LOD2 (EU IP), LATC
(EU STREP) and SoftWiki (BmBF). Dr. Jens Lehmann authored more than 25 articles
in international journals and conferences. Jens Lehmann can be contacted at: lehmann@
informatik.uni-leipzig.de.
Website: http://www.jens-lehmann.org.

Dr. Sören Auer leads the research group Agile Knowledge Engineering and Semantic
Web (AKSW) at Universität Leipzig. His research interests are centered around semantic
data web technologies. Sören is author of over 70 peer-reviewed scientific publications
resulting in a Hirsch index of 17. Sören is leading the large-scale integrated EU-FP7-ICT
research project LOD2 and (co-)founder of several high-impact research and community
projects such as DBpedia, LinkedGeoData and OntoWiki. He is co-organiser of workshops,
programme chair international conferences, area editor of the Semantic Web Journal, serves
as an expert for industry, EC, W3C and advisory board member of the Open Knowledge
Foundation. Sören Auer can be contacted at: auer@informatik.uni-leipzig.de

After obtaining his diploma in Computer Science at the University of Leipzig in 2011,
Claus Stadler started his PhD in the "Agile Knowledge Engineering and Semantic Web"
(AKSW) research group. His main research interests are Semantic Web technologies,
specifically those related to infrastructure, data and information integration, query rewriting
and optimization, update propagation, and the modelling of spatial/temporal data. In the
course of the LinkedGeoData-project he is currently working with geographical data in the
Semantic Web. Claus Stadler can be contacted at: CStadler@informatik.uni-leipzig.
de

Sebastian Hellmann obtained his Master degree in 2008 from the University of Leipzig,
where he is currently researching as a PhD Student in the Agile Knowledge Engineering
and Semantic Web (AKSW) research group. He is founder, leader, or contributor of several
open source projects, including DL-Learner, DBpedia, and NLP2RDF. Among his research
interests are light-weight ontology engineering methods, data integration, and scalability in
the Web Of Data. Sebastian is author of over 10 peer-reviewed scientific publications and
was chair at the Open Knowledge Conference in 2011. Sebastian Hellmann can be contacted
at: hellmann@informatik.uni-leipzig.de

