
NIF Combinator: Combining NLP Tool Output

Sebastian Hellmann1, Jens Lehmann1, Sören Auer2, Marcus Nitzschke1

1 Universität Leipzig, IFI/BIS/AKSW, D-04109 Leipzig, Germany
{lastname}@informatik.uni-leipzig.de, http://aksw.org

2 Technische Universität Chemnitz, Informatik/ISST, D-09107 Chemnitz, Germany
soeren.auer@informatik.tu-chemnitz.de

Abstract. The NLP Interchange Format (NIF) is an RDF/OWL-based
format that provides interoperability between Natural Language Process-
ing (NLP) tools, language resources and annotations by allowing NLP
tools to exchange annotations about text documents in RDF. Other than
more centralized solutions such as UIMA and GATE, NIF enables the
creation of heterogeneous, distributed and loosely coupled NLP appli-
cations, which use the Web as an integration platform. NIF wrappers
have to be only created once for a particular tool and can subsequently
interoperate with a potentially large number of other tools. We present
(1) the currently implemented NIF wrappers, which are available as free
web services and (2) a GUI called the NIF Combinator, which allows to
combine the output of the implemented NIF web services.

1 Introduction

We are currently observing a plethora of Natural Language Processing (NLP)
tools and services being available and new ones appearing almost on a weekly ba-
sis. Some examples of web services providing Named Entity Recognition (NER)
are Zemanta, OpenCalais, Ontos, Evri, Extractiv and Alchemy. Similarly, there
are tools and services for language detection, Part-Of-Speech (POS) tagging, text
classification, morphological analysis, relationship extraction, sentiment analy-
sis and many other NLP tasks. Each of the tools and services has its particular
strengths and weaknesses, but exploiting the strengths and synergistically com-
bining different tools is currently an extremely cumbersome and time consuming
task, as the programming interfaces and result formats often differ to a great ex-
tent. Also, once a particular set of tools is integrated, this integration is usually
not reusable by others. In order to simplify the combination of tools, improve
their interoperability and facilitate the use of Linked Data, we developed the
NLP Interchange Format (NIF). NIF is an RDF/OWL-based format that aims
to achieve interoperability between Natural Language Processing (NLP) tools,
language resources and annotations. The NIF specification has been released
in an initial version 1.0 in November 2011 and implementations for 8 different
NLP tools (e.g. UIMA, Gate ANNIE and DBpedia Spotlight) exist; a public web
demo, the NIF Combinator, is available at http://nlp2rdf.lod2.eu/demo.php
NIF-aware applications will produce output (and possibly also consume input)

http://aksw.org
http://nlp2rdf.lod2.eu/demo.php

adhering to the NIF URI Scheme and the String Ontology as REST services (ac-
cess layer). Other than more centralized solutions such as UIMA3 and GATE4,
NIF enables the creation of heterogeneous, distributed and loosely coupled NLP
applications, which use the Web as an integration platform. Another benefit is
that a NIF wrapper has to be only created once for a particular tool, but enables
the tool to interoperate with a potentially large number of other tools without
additional adaptations. Ultimately, we envision an ecosystem of NLP tools and
services to emerge using NIF for exchanging and integrating rich annotations.
This paper describes the accompanying demo for [2].

NIF Example NIF provides two URI schemes, which can be used to represent
strings as RDF resources. In the example below, “Berlin” in the sentence “Berlin
has a new mayor!” was annotated by two different tools, a part of speech tagger
using an OLiA identifier and an entity linking tool connecting the string with
DBpedia. In this case, a simple string offset based URI scheme was used [2].

1 @prefix : <http :// prefix.given.by/theClient#> .
2 @prefix str: <http :// nlp2rdf.lod2.eu/schema/str/> .
3 @prefix sso: <http :// nlp2rdf.lod2.eu/schema/sso/> .
4 #the whole sentence is given a URI and typed as context
5 :offset_0_23 a str:Context , sso:Sentence;
6 str:isString "Berlin has a new mayor!" .
7 #a substring is given a URI and is annotated
8 :offset_0_6 a str:StringInContext , sso:Word ;
9 str:referenceContext :offset_0_23 ;

10 #part of speech annotation
11 sso:oliaLink <http :// purl.org/olia/penn.owl#ProperNoun > ;
12 #link to dbpedia
13 sso:oen dbpedia:Berlin .

2 NIF Wrappers and Combinator

Access via REST Services: The structural and conceptual interoperability layers
of NIF are built upon the RDF standard, Linked Data principles and existing
ontologies such as OLiA. To improve interoperability and accessibility of NIF
components, NIF provides a normative access layer, which facilitates easier in-
tegration and off-the-shelf solutions by specifying REST parameters. Of special
importance is the prefix parameter as it enables the client to influence the RDF
output. The RDF in Figure 3 is produced by different tools, but can be merged
directly under the condition that the URI prefixes and offsets are the same.

NIF can be used for import and export of data from and to NLP tools. There-
fore, NIF enables to create ad-hoc workflows following a client-server model or
the SOA principle. Following such an approach, clients are responsible for imple-
menting the workflow. The NIF Combinator shows one possible implementation
of such a workflow. The client sends requests to the different tools either as text
or RDF and then receives responses in RDF. This RDF can be aggregated into a
local RDF model. Transparently, external data in RDF can also be requested and

3
http://uima.apache.org/

4
http://gate.ac.uk/

http://uima.apache.org/
http://gate.ac.uk/

Fig. 1. Overview of the NIF Combinator workflow.

added without using additional formalisms. For acquiring and merging external
data from knowledge bases, existing Semantic Web tools can be used.

The main interface are wrappers that provide NIF web services. A NIF web
service must be stateless, HTTP method agnostic respective POST and GET
and accept the following parameters:
– Input type (required, input-type = text | nif-owl). Determines the con-

tent required for the next parameter input, either plain text or RDF/XML.
– Input (required, input = text | rdf/xml). Either URL encoded text or

URL encoded RDF/XML format in NIF.
– Compatibility (optional, nif = true | nif-1.0). Enables NIF output for

existing web services (i.e. deploy NIF in parallel to legacy output).
– Format (optional, format = rdfxml | ntriples | n3 | turtle | json).

The RDF serialisation format.
– Prefix (optional, prefix = uriprefix). An URL encoded prefix, which

must be used for any URIs that the client will create. If missing, it should
be substituted by a sensible default (e.g. the web service URI).

– URI Scheme (optional, urirecipe = offset | context-hash). The URI
scheme that should be used (default is offset).

NIF Combinator Demo: Figure 1 describes the workflow of the NIF Combinator.
The given input (normally text) can be forwarded directly to the dispatcher or
optionally prepared by a tokenizer (see Diamond 1 in Figure 1). The tokenizer
already outputs the results in NIF and provides tokenization for the remaining
components. The dispatcher then calls the selected NLP tools (see checkboxes in
Figure 2) which can read as well as write NIF. The NIF output from all the tools
is then merged (see Figure 3). Merged results can be shown in HTML format for
users. Another option (Diamond 2) is to output RDF directly. This way, the NIF
Combinator can be used as an aggregator web service itself, by simply executing
a GET/POST request with the parameters of the HTML forms.

Conclusions and Future Work: In this demo paper, we briefly presented NIF
wrappers and the NIF Combinator tool. All implemented NIF wrappers are
able to produce NIF output adhering to the NIF 1.0 specification. The additional
integration of a tokenizer has, however, not yet been fully implemented for all

Fig. 2. Screenshot of the NIF Combinator user interface.

Fig. 3. Example of merged RDF from two NLP tools.

wrappers. Tokenization conflicts will be resolved either by providing tokenization
for the tools or by implementing resolution strategies for tokenization conflicts[1]
in the dispatcher/merger component. Future work comprises the creation of a
new version NIF 2.0 based on community feedback. All presented resources are
openly available at http://nlp2rdf.org

Acknowledgments We would like to thank our colleagues from AKSW research
group and the LOD2 project for their helpful comments during the development
of NIF. Especially, we would like to thank Christian Chiarcos for his support
while using OLiA and the students that helped implement the wrappers: Markus
Ackermann, Martin Brümmer, Didier Cherix, Robert Schulze. This work was
partially supported by a grant from the European Union’s 7th Framework Pro-
gramme provided for the project LOD2 (GA no. 257943).

References

1. C. Chiarcos, J. Ritz, and M. Stede. By all these lovely tokens... merging conflicting
tokenizations. LRE, 46(1):53–74, Mar. 2012.

2. S. Hellmann, J. Lehmann, and S. Auer. Linked-data aware uri schemes for refer-
encing text fragments. In EKAW 2012, LNAI. Springer, 2012.

http://nlp2rdf.org

	NIF Combinator: Combining NLP Tool Output
	Sebastian Hellmann, Jens Lehmann, Sören Auer, Marcus Nitzschke

