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Abstract. The Semantic Web has seen a rise in the availability and
usage of knowledge bases over the past years, in particular in the Linked
Open Data initiative. Despite this growth, there is still a lack of knowl-
edge bases that consist of high quality schema information and instance
data adhering to this schema. Several knowledge bases only consist of
schema information, while others are, to a large extent, a mere collec-
tion of facts without a clear structure. The combination of rich schema
and instance data would allow powerful reasoning, consistency check-
ing, and improved querying possibilities as well as provide more generic
ways to interact with the underlying data. In this article, we present a
light-weight method to enrich knowledge bases accessible via SPARQL
endpoints with almost all types of OWL 2 axioms. This allows to semi-
automatically create schemata, which we evaluate and discuss using DB-
pedia.

1 Introduction and Motivation

The Semantic Web has recently seen a rise in the availability and usage of know-
ledge bases, as can be observed within the DataHub1 and other repositories.
Despite this growth, there is still a lack of knowledge bases that consist of sophis-
ticated schema information and instance data adhering to this schema. Several
knowledge bases, e.g. in the life sciences, only consist of schema information,
while others are, to a large extent, a collection of facts without a clear structure,
e.g. information extracted from databases. The combination of sophisticated
schema and instance data would allow powerful reasoning, consistency checking,
and improved querying. Schema enrichment, as described in this article, allows
to create schemata base based on existing data.2

Example 1. As an example, consider a knowledge base containing a property
birthPlace and subjects in triples of this property, e.g. Brad Pitt, Angela
Merkel, Albert Einstein etc. Our enrichment algorithms could, then, suggest

1 http://thedatahub.org/
2 The approach of not creating schema upfront is sometimes referred to as �grass roots�
approach or �after the fact� schema creation.



that the property birthPlace may be functional and has the domain Person as
it is encoded via the following axioms in Manchester OWL syntax3:
ObjectProperty: birthPlace

Characteristics: Functional

Domain: Person

Range: Place

SubPropertyOf: hasBeenAt

Adding such axiom to a knowledge base can have several bene�ts: 1.) The axioms
serve as documentation for the purpose and correct usage of schema elements.
2.) They improve the application of schema debugging techniques. For instance,
after adding the above axioms the knowledge base would become inconsistent if
a person has two di�erent birth places due to the functionality axiom. Speci�-
cally for the DBpedia knowledge base, we observed an error in which a person
was asserted to be born in Lacrosse, the game, instead of Lacross, the city in the
United States. Such errors can be automatically detected when schema informa-
tion such as the range restriction is present (assuming disjointness of the classes
Place and Game). 3.) Additional implicit information can be inferred, e.g. in the
above example the birth place of a person can be inferred to be one of the places
a person has stayed at. The main purpose of our research is to reduce the e�ort
of creating and maintaining such schema information.

We implemented our enrichment methods in the DL-Learner4 framework [15]
based on earlier work in [11,22,19] and the ORE tool [18] 5 contains a graphical
interface for them. Whereas previously we focused on equivalence and subclass
axioms, we describe how to support a broader range of OWL axioms in this
article. In particular, we advance the current state of the art as follows:

� support for suggesting the following axioms to enrich a knowledge base:
• class and property hierarchy (subsumption, equivalence, disjointness)
• property characteristics (transitivity, (a)symmetry, (inverse)functionality,
(ir)re�exivity)

• inverse properties
� support for knowledge bases accessible via SPARQL endpoints
� scalability of algorithms via sampling
� DL-Learner command line interface and ORE web interface for the algo-
rithms are available as open source

The article is structured as follows: we brie�y described the term schema
enrichment and give an overview of existing approaches in Section 2. The en-
richment approach itself is described in Section 3. To be able to separate the
process of generating enrichments from the process of manual supervision by a
knowledge engineer, we need to store the suggestions. We do this via an ontology,
which is described in Section 4. We then continue by giving some preliminary
evaluation results for applying the algorithms on DBpedia in Section 5. Finally,
we conclude and describe future work.
3 For details on Manchester OWL syntax (e.g. used in Protégé, OntoWiki) see http:

//www.w3.org/TR/owl2-manchester-syntax/.
4 http://dl-learner.org
5 http://ore-tool.net



2 Knowledge Base Enrichment Overview

The term enrichment in this article refers to the extension of a knowledge base
schema. It describes the process of increasing the expressiveness and semantic
richness of a knowledge base. Enrichment methods can typically be applied in
a grass-roots approach to knowledge base creation. In such an approach, the
whole ontological structure is not created upfront6, but evolves with the data in
a knowledge base. Ideally, this enables a more agile development of knowledge
bases, which could become an interesting alternative to more traditional ontology
engineering methods.

Knowledge base enrichment can be seen as a sub-discipline of ontology learn-
ing. Ontology learning is more general in that it can rely on external sources,
e.g. written text, to create an ontology. The term knowledge base enrichment is
typically used when already existing data in the knowledge base itself is anal-
ysed to improve its schema. Enrichment methods span several research areas
like knowledge representation and reasoning, machine learning, statistics, nat-
ural language processing, formal concept analysis and game playing. Ontology
enrichment usually involves applying heuristics or machine learning techniques
to �nd axioms, which can be added to an existing ontology. Naturally, di�erent
techniques have been applied depending on the speci�c type of axiom.

One of the most complex tasks in ontology enrichment is to �nd de�nitions

of classes. This is strongly related to Inductive Logic Programming (ILP) [26]
and more speci�cally supervised learning in description logics. Research in this
area is not purely focused on ontology enrichment, but has other applications,
e.g. drug e�ciency prediction in the life sciences. Work on learning in descrip-
tion logics goes back to e.g. [6,7], which used so-called least common subsumers.
Later, [4] invented a re�nement operator for ALER and proposed to solve the
problem by using a top-down approach. [8,12,13] combine both techniques and
implement them in the YINYANG tool. However, those algorithms tend to pro-
duce long and hard-to-understand expressions. The algorithms implemented in
DL-Learner [20,21,14,22] overcome this problem and investigate the learning
problem and the use of top down re�nement in detail. DL-FOIL [9] is a similar
approach, which is based on a mixture of upward and downward re�nement of
class expressions. They use alternative measures in their evaluation, which take
the open world assumption into account, which was not done in ILP previously.
Most recently, CELOE [16] implements appropriate heuristics and adaptations
for learning de�nitions in ontologies. We use this algorithm for learning de�ni-
tions, but go beyond it by including support for many di�erent axiom types.

A di�erent approach to learning the de�nition of a named class is to compute
the so called most speci�c concept (msc) for all instances of the class. The most
speci�c concept of an individual is the most speci�c class expression, such that
the individual is instance of the expression. One can then compute the least com-

mon subsumer (lcs) [3] of those expressions to obtain a description of the named
class. However, in expressive description logics, an msc does not need to exist and
the lcs is simply the disjunction of all expressions. For light-weight logics, such
as EL, the approach appears to be promising. Other approaches, e.g. [23] focus

6 Talk by Tim Berners-Lee which advocates to get �raw data now�:
http://www.ted.com/talks/tim_berners_lee_on_the_next_web.html



on learning in hybrid knowledge bases combining ontologies and rules. Usually,
hybrid approaches are a generalisation of concept learning methods, which en-
able powerful rules at the cost of e�ciency (because of the larger search space).
Similar as in knowledge representation, the tradeo� between expressiveness of
the target language and e�ciency of learning algorithms is a critical choice in
symbolic machine learning.

Another enrichment task is knowledge base completion. The goal of such a
task is to make the knowledge base complete in a particular well-de�ned sense.
For instance, a goal could be to ensure that all subclass relationships between
named classes can be inferred. The line of work starting in [28] and further pur-
sued in e.g. [2] investigates the use of formal concept analysis for completing
knowledge bases. It is promising, although it may not be able to handle noise
as well as a machine learning technique. A Protégé plugin [29] is available. [32]
proposes to improve knowledge bases through relational exploration and imple-
mented it in the RELExO framework7. It focuses on simple relationships and
the knowledge engineer is asked a series of questions. The knowledge engineer
either must positively answer the question or provide a counterexample.

[33] focuses on learning disjointness between classes in an ontology to allow
for more powerful reasoning and consistency checking. To achieve this, it can
use the ontology itself, but also texts, e.g. Wikipedia articles corresponding to a
concept. One of the closely related and most recent work in the area is statistical
schema induction via association rule mining [31]. Association rules are a form of
implication patterns and used to discover regularities in a data set. For instance,
in [31] an association rule A =⇒ B with su�ciently high con�dence and support
between two classes A and B indicates that introducing a subclass relationship
A v B may be appropriate.

Another type of ontology enrichment is schema mapping. This task has been
widely studied and will not be discussed in depth here. Instead, we refer to [5]
for a survey on ontology mapping. Schema mapping is not integrated in the
presented prototype.

Type/Aim References

Taxonomies [34,31]
De�nitions ILP approaches: [20,21,22,16,9,8,12,13,4],

genetic approaches: [14]
Super Class Axioms [16,31]
Rules in Ontologies [23,24]
Disjointness [33]
Property Chains [31]
Alignment challenges: [30], recent survey: [5]
Completion formal concept analysis and relational exploration [2,32,29]
Table 1. Work in ontology enrichment grouped by type or aim of learned structures.

7 http://code.google.com/p/relexo/



Fig. 1. 3-Phase Enrichment Work�ow

3 Enrichment with OWL Axioms

There is a large variety of axiom types in OWL, which we support in our enrich-
ment tool. We �rst describe our general methodology for creating enrichment
suggestions and then present details for each axiom type in separate sections.

3.1 General Method

In this part, we will describe the light-weight learning methods for obtaining
enrichment suggestions. The methods usually take an entity (a class or property
in our case) as input, generates a set of OWL axioms as output and proceeds in
three phases (see Figure 1):

1. In the �rst phase, SPARQL queries are used to obtain general information
about the knowledge base, in particular we retrieve axioms, which allow to
construct the class hierarchy. It can be con�gured whether to use an OWL
reasoner for inferencing over the schema or just taking explicit knowledge
into account.8 Naturally, the schema only needs to be obtained once and can
then be re-used by all algorithms and all entities.

2. The second phase consists of obtaining data via SPARQL, which is relevant
for learning the considered axiom. We will brie�y describe this phase for
each axiom type in the following sections.

3. In the third phase, the score of axiom candidates is computed and the results
returned.

Many of our employed heuristics to suggest axioms are based on counting.
For instance, when determining whether a class A is appropriate as domain of a
property p, we count the number of triples using p in predicate position and the
number of subjects in those triples which are instances of A. The latter value
is divided by the �rst value to obtain a score. We illustrate this using a simple
example. Let the following triples be given (Turtle syntax):

8 Note that the OWL reasoner only loads the schema of the knowledge base and,
therefore, this option usually works even in cases with several hundred thousand
classes in our experiments, which used the HermiT reasoner.



1 @prefix dbpedia: <http :// dbpedia.org/resource/>.

2 @prefix dbo: <http :// dbpedia.org/ontology/>.

3 dbpedia:Luxembourg dbo:currency dbpedia:Euro;

4 rdf:type dbo:Country.

5 dbpedia:Ecuador dbo:currency dbpedia:US_dollar;

6 rdf:type dbo:Country.

7 dbpedia:Ifni dbo:currency dbpedia:Spanish_peseta;

8 rdf:type dbo:PopulatedPlace.

9 dbo:Country rdfs:subClassOf dbo:PopulatedPlace.

In the above example, we would obtain a score of 66,7% (2 out of 3) for the
class dbo:Country and 100% (3 out of 3) for the class dbo:PopulatedPlace9 as
candidates for the range of the property dbo:currency.

A disadvantage of using this straightforward method of obtaining a score
is that it does not take the support for an axiom in the knowledge base into
account. Speci�cally, there would be no di�erence between having 100 out of
100 correct observations or 3 out of 3 correct observations.

For this reason, we do not just consider the count, but the average of the
95% con�dence interval of the count. This con�dence interval can be computed
e�ciently by using the improved Wald method de�ned in [1]. Assume we have
m observations out of which s were successful, then the approximation of the
95% con�dence interval is as follows:

max(0, p′ − 1.96 ·
√

p′ · (1− p′)

m+ 4
) to min(1, p′ + 1.96 ·

√
p′ · (1− p′)

m+ 4
)

with p′ =
s+ 2

m+ 4
This formula is easy to compute and has been shown to be accurate in [1].

In the above case, this would change the score to 57.3% (previously 66,7%)
for dbo:Country and 69.1% (previously 100%) for dbo:PopulatedPlace. This
indicates that there is not much support for either of those choices in the knowl-
edge base. 100 out of 100 correct observations would score much higher (97.8%).
The actual scores for the DBpedia Live as of May 2012 are 99.1% for the class
dbo:PopulatedPlace and 97.6% for dbo:Country.

Note that in this implementation, more general classes in the hierarchy would
always score higher. It might be desirable to correct this by slightly penalising
very general classes. The drawback of such a penalty could be that the scores
would be more di�cult to understand for users. We leave the decision on such a
penalty and a possible implementation as an area for future work.

3.2 Learning Subclass Axioms

In this section and the following sections, we will just focus on phase 2 of the
above described work�ow. This phase consists of obtaining the data required for
generating enrichment suggestions. Since we mainly expect the data to be avail-
able in triple stores, the data acquisition is implemented via SPARQL queries.
We will brie�y present the necessary SPARQL query (or queries) here.

9 If the reasoning option is turned o�, the score would be 33,3%.



The �rst axiom type, we consider, are subclass axioms. Generating sugges-
tions for subclass axioms allows to create a taxonomy from instance data. Basi-
cally the data for this can be fetched in 2 di�erent ways:

Single Query
1 SELECT ? type (COUNT(? ind ) AS ? count ) WHERE {
2 ? ind a <$c l a s s >.
3 ? ind a ? type .
4 } GROUP BY ? type

The query assumes a $class as input for which we want to learn super-
classes. It retrieves all instances of a class and then counts the types for each
of those instances. A higher count indicates better candidates for superclasses.
The disadvantage of this approach is that it puts high computational load on the
SPARQL endpoint in case of very large data sets. An alternative implementation
is to iterate through all results as shown below.10 This way, each individual query
is inexpensive for the endpoint as the information is obtained in small chunks.
Moreover, in DL-Learner, we impose runtime limits on algorithms. This means
that we stop iterating through results once a con�gurable time threshold has
been reached. The score for suggestions is then approximated from the obtained
sample. The drawback of this method is that the score can only be computed
on a subset of the knowledge base whereas in the �rst method the whole data
set is taken into account.

Iterative Query
1 SELECT ? ind ? type WHERE {
2 ? ind a <$c l a s s >.
3 ? ind a ? type .
4 }
5 LIMIT $ l im i t OFFSET $ o f f s e t

3.3 Learning Disjointness

For disjointness, we can use the same query as above:
1 SELECT ? type (COUNT(? ind ) AS ? count ) WHERE {
2 ? ind a <$c l a s s >.
3 ? ind a ? type .
4 } GROUP BY ? type

The only di�erence in terms of the query is that this time, a lower count
indicates a candidate for disjointness. When running enrichment in batch mode,
the number of suggested disjointness axioms is minimsed by moving disjointness
as far up the class hierarchy as possible (see Section 3.8).

In addition, we draw on [33,10] for computing disjointness. Several crite-
ria, speci�cally taxonomic overlap, existing subsumption axioms and semantic
similarity are used in order to determine the most useful disjointness axioms.

3.4 Property Subsumption/Disjointness

For properties, learning subsumption and disjointness is analogous to learning
this kind of axioms for classes. The di�erence is that we count how often subject

10 Correct pagination in SPARQL with LIMIT and OFFSET only works with the sorting
of the results by using ORDER BY, but we omit this in this paper for simplicity.



?s and object ?o in the triples for a given property $property are also related
via other properties ?p.

1 SELECT ?p (COUNT(? s ) AS ? count ) WHERE {
2 ? s ?p ?o .
3 ? s <$property> ?o .
4 } GROUP BY ?p

3.5 Property Domain and Range

For domains of object properties and data properties we count the occurrences
of types in the subject position of triples having the property.

1 SELECT ? type COUNT(DISTINCT ? ind ) WHERE {
2 ? ind <$property> ?o .
3 ? ind a ? type .
4 } GROUP BY ? type

For property ranges, we issue di�erent queries depending on whether a re-
source is a data or object property.

Object Properties The object property case is analogous to learning domains
as shown above, except this time we pay attention to the triple objects.

1 SELECT ? type (COUNT(DISTINCT ? ind ) AS ? cnt ) WHERE {
2 ? s <$property> ? ind .
3 ? ind a ? type .
4 } GROUP BY ? type

Data Properties For data properties, we make use of the fact that every
triple is annotated with its datatype in RDF, i.e. we can just count occurring
datatypes.

1 SELECT ?datatype COUNT(DISTINCT ? ind ) WHERE {
2 ? ind <$property> ? va l .
3 } GROUP BY (DATATYPE(? va l ) AS ? datatype )

3.6 Inverse Properties

To generate axioms which state that a property p1 is the inverse of a property p2
we run the query below, which retrieves properties p having subject and object
occurring in the triples for the given property $property in swapped positions
and count how often this happens.

1 SELECT ?p (COUNT(∗ ) AS ? cnt ) WHERE {
2 ? s <$property> ?o .
3 ?o ?p ? s .
4 } GROUP BY ?p

3.7 Property Characteristics

Based on the axiom type which shall be learned for a given property $property,
either the number of triples (symmetry, asymmetry), the number of distinct
subjects (functionality, re�exivity, irre�exivity) or the number of distinct objects
(inverse-functionality) is computed in a �rst step. This value is then combined
with the result of the corresponding query in Table 2 .



Functionality
SELECT COUNT(DISTINCT ? s ) AS ? f un c t i ona l WHERE {

? s <$property> ?o1 .
FILTER NOT EXISTS {? s <$property> ?o2 . FILTER(? o1 != ?o2 )}

}

Inverse-
Functionality

SELECT COUNT(DISTINCT ?o ) AS ? i n v e r s e f u n c t i o n a l WHERE {
? s1 <$property> ?o .
FILTER NOT EXISTS {? s2 <$property> ?o . FILTER(? s1 != ? s2 )}

}

Symmetry
SELECT (COUNT(∗ ) AS ? symmetric ) WHERE {

? s <$property> ?o .
?o <$property> ? s .

}

Asymmetry
SELECT (COUNT(∗ ) AS ?asymmetric ) WHERE {

? s <$property> ?o .
FILTER NOT EXISTS {?o <$property> ? s . }

}

Re�exivity
SELECT (COUNT(DISTINCT ? s ) AS ? r e f l e x i v e ) WHERE {

? s <$property> ? s .
}

Irre�exivity
SELECT (COUNT(DISTINCT ? s ) AS ? i r r e f l e x i v e ) WHERE {

? s <$property> ?o .
FILTER NOT EXISTS {? s <$property> ? s . }

}

Transitivity

SELECT (COUNT(∗ ) AS ? t r a n s i t i v e ) WHERE {
? s <$property> ?o .
?o <$property> ?o1 .
? s <$property> ?o1 .

}

Table 2. SPARQL queries used to learn the di�erent types of OWL 2 property char-
acteristics.

3.8 Batch Mode

While the described methodology is designed to be applicable for learning axioms
involving speci�c classes or properties, it is also possible to run the enrichment
script in batch mode. In this case, the script �rst detects all schema entities,
loops over them and calls the learning methods for all axiom types. Our evalua-
tion shows that the approach still scales to large knowledge bases, e.g. DBpedia.
To prevent �ooding of the SPARQL endpoints, the batch mode contains con�g-
urable options to delay the execution of successive queries, and for the case that
a timeout occurs to rerun the query after some waiting period.

Running the algorithms batched allows to add further optimisations, e.g.
for disjointness between classes we give the opportunity to restrict the returned
suggestions to pairs of most general classes, as due to inference disjointness
is propagated to lower subclasses. Further possibilities we will investigate in
the future are (1) the problem of coherency, i.e. some axiom types especially
disjointness combined with e.g. subsumption can lead to unsatis�able entities, (2)
iterative creation of the knowledge base, i.e. taking into account earlier learned
axioms for the generation of other axiom types, and (3) the minimization of the
resulting ontology, i.e. �nding an ontology in which none of the axioms can be
inferred from other existing axioms.

4 Enrichment Ontology

As previously discussed, enrichment is usually a semi-automatic process. Each
enrichment suggestion generated by an algorithm should be reviewed by a knowl-
edge engineer who can then decide to accept or reject it. Because of this, there
is a need for serialising enrichment suggestions such that the generation of them
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Fig. 2. Enrichment ontology used to store additional information occuring during learn-
ing proocess.

is independent of the process of accepting or rejecting them. Since all enrich-
ment suggestions are OWL axioms, they could simply be written in an RDF or
OWL �le. However, this might be insu�cient, because we lose a lot of meta-
data this way, which could be relevant for the knowledge engineer. For instance,
algorithms may be able to store con�dence values, statistics or even textual
descriptions on why an enrichment is suggested. For this reason, we created
an enrichment ontology11, which is partially building on related e�orts in [27]
and http://vocab.org/changeset/schema.html. Such an interchange format
is also relevant, because the process of generating enrichments for all schema
elements in very large knowledge bases will often take several hours to com-
plete. Furthermore, the metadata also simpli�es reproducing algorithms results
by storing algorithm versions, the used knowledge sources and time information.
An overview of the ontology can be found in Figure 2.

5 Preliminary Evaluation

To assess the feasibility of our approaches, we evaluated them on DBpedia [17].
We performed an enrichment on the DBpedia Live knowledge base [25], which
at that time consisted of 385 million triples, 3.64 million things, 272 classes, 629
object properties and 706 data properties. We used a con�dence threshold of 0.7
for the algorithm runs and showed at most 10 suggestions per entity and axiom
type. Table 3 contains basic runtime information on the algorithms. It shows
how many enrichment suggestions were made per axiom type, the runtime of
the algorithm, the average score and the average of the maximum scores of each
algorithm run. The algorithms require 10-161 seconds per ontology entity. To
the best of our knowledge, there are no other approaches performing the same
task to which we can compare our method in general. For a small number of
the reported axiom types [31] performs a similar approach using association rule
mining, which yields very similar results to our approach due to high similarity
of the underlying heuristics for this axiom types.

11 Available at http://dl-learner.org/ontologies/enrichment.owl.



algorithm Avg. nr. of Avg. runtime timeout Avg. Avg. max.
#suggestions in ms in % score score

disjoint classes 10.0 11957.0 0.00 1.00 1.00
subclass 2.5 98233.0 0.00 0.95 0.98
disjoint objectproperty 10.0 12384.0 0.16 1.00 1.00
equivivalent objectproperty 1.1 12509.0 0.16 0.96 0.96
functional objectproperty 1.0 19990.0 0.48 0.89 0.89
inv.funct. objectproperty 1.0 113590.0 4.29 0.86 0.86
objectproperty domain 3.1 11577.0 0.00 0.93 0.96
objectproperty range 2.6 14253.0 0.16 0.84 0.87
objectproperty subPropertyOf 1.1 56363.0 0.32 0.93 0.93
symmetric objectproperty 1.0 12730.0 0.32 0.80 0.80
transitive objectproperty 1.0 16830.0 1.91 0.84 0.84
irre�exive objectproperty 1.0 17357.0 0.16 0.97 0.97
re�exive objectproperty 0.0 10013.0 0.16 - -
disjoint dataproperty 10.0 137204.0 3.97 1.00 1.00
equiv. dataproperty 1.0 161229.0 4.25 0.92 0.92
funct. dataproperty 1.0 18281.0 0.42 0.94 0.94
dataproperty domain 2.8 10340.0 0.28 0.94 0.96
dataproperty range 1.0 13516.0 0.42 0.96 0.96
dataproperty subPropertyOf 1.0 91284.0 4.11 0.88 0.88

OVERALL 3.0 55389.0 1.08 0.92 0.93
Table 3. Basic information on runtime and number of suggestions of the algorithms.

Table 4 shows our evaluation results. In this evaluation we de�ned recall
with respect to the existing DBpedia ontology. For instance, 180/185 in the
subClassOf row indicates that we were able to re-learn 180 out of 185 such
subclass relationships from the original DBpedia ontology. Higher numbers are
an indicator that the methods do not miss many possible enrichment suggestions.
The next column shows how many additional axiom were suggested, i.e. how
many axioms were suggested which are not in the original DBpedia ontology.
The last three columns are the result of a manual evaluation. Both authors
independently observed at most 100 axioms per type (possibly less, in case fewer
than 100 suggestions were made) and evaluated them manually. Three di�erent
categories were used: �yes� indicates that it is likely that they would be accepted
by a knowledge engineer, �maybe� are corner cases and �no� are those, which
would probably be rejected. The evaluation at this stage is preliminary as it was
only conducted by the authors. A full evaluation including several datasets and
external reviewers is scheduled as future work.

In summary, we observed that axioms regarding the class hierarchy basically
seem to be more easy to learn than axioms building the property hierarchy. We
also noticed that we could suggest new axioms for all axiom types except for
the Re�exiveObjectProperty ones. The reason is that DBpedia does not contain
corresponding instance data. The low recall for the range axioms of object and



Estimated precision
axiom type recall additional axioms no maybe yes

SubClassOf 180/185 155 5 20 75
EquivalentClasses 0/0 1812 20 30 50
DisjointClasses 0/0 2449 0 0 100
SubObjectPropertyOf 0/0 45 18 9 18
EquivalentObjectProperties 0/0 40 40 0 0
DisjointObjectProperties 0/0 5670 0 0 100
ObjectPropertyDomain 385/449 675 10 22 68
ObjectPropertyRange 173/435 427 4 59 37
TransitiveObjectProperty 0/0 12 5 5 2
FunctionalObjectProperty 0/0 352 8 18 74
InverseFunctionalObjectProperty 0/0 173 72 3 25
SymmetricObjectProperty 0/0 3 0 0 3
Re�exiveObjectProperty 0/0 0 - - -
Irre�exiveObjectProperty 0/0 536 1 0 99
SubDataPropertyOf 0/0 197 86 8 6
EquivalentDataProperties 0/0 213 20 9 71
DisjointDataProperties 0/0 62 0 0 100
DataPropertyDomain 448/493 623 27 33 40
DataPropertyRange 118/597 79 0 0 100
FunctionalDataProperty 14/14 509 4 17 79

Table 4. Evaluation results.

data properties is mostly due to either missing or di�erent type information on
the triples' objects.

Below, we list some of the observations we made:

� The test set for irre�exive properties contained dbo:isPartOf, which is usu-
ally considered as a re�exive property. It is the only incorrect suggestion in
this test set.

� The 5 missing subclass axioms are as follows:
1. dbo:Ginkgo subClassOf: dbo:Plant

2. dbo:MixedMartialArtsLeague subClassOf: dbo:SportsLeague

3. dbo:VoiceActor subClassOf: dbo:Actor (each of those 3 axioms has
only 1 triple and therefore too low support)

4. dbo:PoloLeague subClassOf: dbo:SportsLeague (only 3 triples, there-
fore it had low support)

5. dbo:Bridge subClassOf: dbo:Building (none of the bridges is actu-
ally a building according to DBpedia Live)

� As an example for the imperferct recall on object property domains, the
results of the learning procedure for dbo:hometown are as follows: For the
existing domain dbo:Person we only got a score of 0.3, whereas dbo:Band
and dbo:Organisation achieved a score of approx. 0.7. This is because each
dbo:Band was also a dbo:Person at this time in DBpedia Live.

� We discovered 3 symmetric object properties, namely
dbo:neighboringMunicipality, dbo:sisterCollege and
dbo:currentPartner.



� For most of the data properties, the learned axioms of the types SubDat-
aPropertyOf and EquivalentDataProperties contained properties of the DB-
pedia namespace http://dbpedia.org/property/(dbp), e.g.
EquivalentDataProperties(dbo:drugbank,dbp:drugbank). Mixing the two dif-
ferent ontologies is usually not desirable, hence the low precision in some of
these cases. As a result, we now support more �ne-grained control over the
used ontology namespaces to avoid those problems.

� We missed some DataPropertyRanges, because sometimes the de�ned range
in the ontology is a di�erent datatype, compared to the one of the lit-
eral values in the triples. For instance dbo:background has a de�ned range
xsd:string, but in the instance data the literals only have a language tag
(which makes them implicit to rdf:PlainLiteral). dbo:budget (range in
ontology: xsd:double, but http://dbpedia.org/datatype/usDollar used
in the actual literals) is a di�erent example. Clearly, in those cases data
errors cause problems and our enrichment tool can be used to detect those.

� In some cases we learned a di�erent datatype, so we missed the existing one
and found an additional one. Most of these additional axioms would also
be a reasonable but not optimal choice, e.g. for dbo:populationTotal we
learned xsd:integer, whereas in the ontology xsd:nonNegativeInteger is
de�ned.

6 Conclusion

We presented a set of approaches for schema enrichment, which covers most
OWL 2 axioms. Those approaches were implemented and released in the DL-
Learner machine learning framework. In our preliminary evaluation, we showed
the feasibility of the methods for knowledge bases of the size of DBpedia.

In future work, we will investigate enhancements of the presented methods
as indicated in the discussions of the respective approaches. In particular, we
closely collaborate with the authors of [31] to �ne-tune the approach. One of
the next steps will be to investigate how to generate a coherent ontology when
combining all suggestions and how to use such an ontology for debugging large
knowledge bases.
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