Modul Semantik Web (SS2011)

Dr. Sören Auer

<u>Dr. Jens Lehmann</u>

Prof. Dr. Gerhard Brewka

Frank Loebe

Institut für Informatik · Universität Leipzig

OWL Semantik und Reasoning 17. Mai 2011

Semantic Web

- ① Einleitung und Ausblick
- URIs und Einführung in RDF
- 3 RDF Schema
- 4 Logik Grundlagen
- Semantik von RDF(S)
- OWL Syntax und Intuition
- OWL Semantik und Reasoning
- Spezifikation von Regeln in RDF RIF
- RDF-Datenbanken, Triple- und Knowledge-Stores, Anfragesprachen SPARQL, SPARUL
- Integration von RDF und XHTML RDFa, GRDDL
- U Linked Data Web, Semantische Wikis
- Semantic Web Anwendugen, Rück- und Ausblick

Gliederung

- Beschreibungslogiken
- 2 ALC
- 3 OWL als SHOIN(D)
- 4 Inferenzprobleme
- 5 Tableau-Beweiser
- 6 OWL2

Gliederung

- Beschreibungslogiken
- 2 ALC
- 3 OWL als SHOIN(D)
- 4 Inferenzprobleme
- 5 Tableau-Beweiser
- 6 OWL2

Beschreibungslogiken

- engl.: description logics (DLs)
- Familie von Wissensrepräsentationssprachen
- Fragmente von FOL
- meist entscheidbar
- vergleichsweise ausdrucksstark
- entwickelt aus semantischen Netzwerken
- intuitive Syntax
- variablenfrei
- W3C-Standard OWL DL basiert auf der Beschreibungslogik $\mathcal{SHOIN}(\mathcal{D})$
- \bullet wir besprechen zunächst \mathcal{ALC} (Basis für komplexere DLs)

Gliederung

- 1 Beschreibungslogiken
- 2 ALC
- 3 OWL als SHOIN(D)
- 4 Inferenzprobleme
- 5 Tableau-Beweiser
- 6 OWL2

ALC - Grundbausteine und ABox-Axiome

Grundbausteine:

- Klassennamen (auch als Konzepte bezeichnet)
- Rollennamen
- Individuennamen (auch als Objekte bezeichnet)

Wissensbasis = Menge von Axiomen

Axiome für Instanzdaten:

- Professor(Faehnrich)
 - ☐ Individuum Faehnrich ist in Klasse Professor
- zugehoerigkeit(Faehnrich, BIS)

ALC - TBox-Axiome

Professor Fakultaetsmitglied

- "Jeder Professor ist ein Fakultätsmitglied."
- entspricht $(\forall x)(Professor(x) \rightarrow Fakultaetsmitglied(x))$
- entspricht rdfs:subClassOf

Professor ≡ Fakultaetsmitglied

- "Die Fakultätsmitglieder sind genau die Professoren."
- entspricht $(\forall x)(Professor(x) \leftrightarrow Fakultaetsmitglied(x))$
- entspricht owl:equivalentClass

ALC - komplexe Klassen

Konjunktion □ entspricht owl:intersectionOf

Disjunktion ⊔ **entspricht** owl:unionOf

Negation ¬ entspricht owl: complementOf

Beispiel:

Professor \sqsubseteq (Person \sqcap Universitaetsangehoeriger) \sqcup (Person \sqcap \neg Doktorand \sqcap Hochschulabsolvent))

Prädikatenlogik:

 $(\forall x)(Professor(x) \rightarrow ((Person(x) \land Universitaetsangehoeriger(x)) \lor Person(x) \land \neg Doktorant(x) \land Hochschulabsolvent(x))$

AKSW

ALC - Quantoren auf Rollen

$Pruefung \sqsubseteq \forall hatPruefung.Professor$

- "Jede Prüfung hat nur Professoren als Prüfer."
- $(\forall x)(Pruefung(x) \rightarrow (\forall y)hatPruefer(x, y) \rightarrow Professor(y)))$
- entspricht owl:allValuesFrom

Professor ∃hatPruefer.Person

- "Jede Prüfung hat mindestens einen Prüfer."
- $(\forall x)(Pruefung(x) \rightarrow (\exists y)(hatPruefer(x,y) \land Person(y)))$
- entspricht owl:someValuesFrom

(Weitere) OWL-Konstrukte in \mathcal{ALC}

owl:Nothing: $\bot \equiv C \sqcap \neg C$

owl: Thing: $T \equiv C \sqcup \neg C$

owl:disjointWith: $C \sqcap D \equiv \bot$

(gleichbedeutend:) $C \sqsubseteq \neg D$

rdfs:range: $\top \sqsubseteq \forall R.C$

rdfs:domain: $\exists R. \top \sqsubseteq C$

ALC - formale Syntax

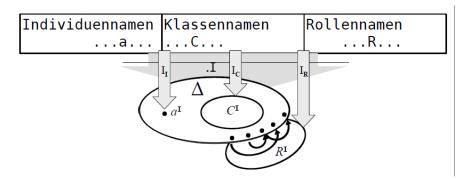
- Folgende Syntaxregeln erzeugen Klassen in ALC. Dabei ist A eine atomare Klasse und R eine Rolle
 C, D → A|⊤|⊥|¬C|C □ D|C □ D|∀R.C|∃R.C
- Eine \mathcal{ALC} -TBox besteht aus Aussagen der Form $C \sqsubseteq D$ und $C \equiv D$, wobei C, D Klassen sind.
- Eine \mathcal{ALC} -ABox besteht aus Aussagen der Form C(a) und R(a,b), wobei C eine komplexe Klassen, R eine Rolle und a,b Individuen sind.
- Eine ALC-Wissensbasis besteht aus einer ABox und einer TBox.

ALC - Semantik (Interpretationen)

- wir definieren modelltheoretische Semantik für ALC (d.h. Folgerung wird über Interpretationen definiert)
- eine Interpretation $\mathcal{I} = (\triangle^{\mathcal{I}}, \cdot^{\mathcal{I}})$ besteht aus
 - einer Menge $\triangle^{\mathcal{I}}$, genannt Domäne und
 - einer Funktion $\cdot^{\mathcal{I}}$, die abbildet von
 - Individuennamen a auf Domänenelemente $a \in \triangle^{\mathcal{I}}$
 - Klassennamen C auf Mengen von Domänenelementen $C^{\mathcal{I}} \subseteq \triangle^{\mathcal{I}}$
 - Rollennamen R auf Mengen von Paaren von Domänenelementen $R^{\mathcal{I}} \subseteq \triangle^{\mathcal{I}} \times \triangle^{\mathcal{I}}$

ALC- Semantik (Interpretationen)

schematisch:



\mathcal{ALC} - Semantik (komplexe Klassen)

wird auf komplexe Klassen erweitert:

$$T^{\mathcal{I}} = \wedge^{\mathcal{I}}$$

$$(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}} \qquad (C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$$

$$(\forall R.C)^{\mathcal{I}} = \{x \mid \forall (x,y) \in R^{\mathcal{I}} \rightarrow (\exists R.C)^{\mathcal{I}} = \{x \mid \exists (x,y) \in R^{\mathcal{I}}\}$$

$$(\exists R.C)^{\mathcal{I}} = \{x \mid \exists (x,y) \in R^{\mathcal{I}}\}$$

$$(\neg C)^{\mathcal{I}} = \triangle^{\mathcal{I}} \setminus C^{\mathcal{I}}$$

ALC - Semantik (Axiome, Modelle)

... und schließlich auf Axiome:

- C(a) gilt in \mathcal{I} , wenn: $a^{\mathcal{I}} \in C^{\mathcal{I}}$
- R(a, b) gilt in \mathcal{I} , wenn: $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in R^{\mathcal{I}}$
- $C \sqsubseteq D$ gilt in \mathcal{I} , wenn: $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $C \equiv D$ gilt in \mathcal{I} , Wenn: $C^{\mathcal{I}} = D^{\mathcal{I}}$

Interpretationen, die ein Axiom (bzw. eine Menge von Axiomen) erfüllen, nennt man **Modelle**.

TBox T: Man $\equiv \neg Woman \sqcap Person$

Woman ⊑ Person

 $Mother \equiv Woman \sqcap \exists hasChild. \top$

ABox A: Man(STEPHEN).

 \neg Man(MONICA).

Woman(JESSICA).

hasChild(STEPHEN, JESSICA).

Für alle folgenden Interpretationen \mathcal{I} :

- Domäne $\Delta^{\mathcal{I}} = \{ \textit{MONICA}, \textit{JESSICA}, \textit{STEPHEN} \}$
- Objekte werden aus sich selbst abgebildet ($a^{\mathcal{I}} = a$)


```
TBox \mathcal{T}: Man \equiv \neg \text{Woman} \sqcap \text{Person}
Woman \sqsubseteq \text{Person}
Mother \equiv \text{Woman} \sqcap \exists \text{hasChild.T}

ABox \mathcal{A}: Man(STEPHEN).
\neg \text{Man(MONICA)}.
Woman(JESSICA).
hasChild(STEPHEN, JESSICA).
```

```
	ext{Man}^{\mathcal{I}_1} = \{	ext{JESSICA}, 	ext{STEPHEN}\}
	ext{Woman}^{\mathcal{I}_1} = \{	ext{MONICA}, 	ext{JESSICA}\}
	ext{Mother}^{\mathcal{I}_1} = \emptyset
	ext{Person}^{\mathcal{I}_1} = \{	ext{JESSICA}, 	ext{MONICA}, 	ext{STEPHEN}\}
	ext{hasChild}^{\mathcal{I}_1} = \{(	ext{STEPHEN}, 	ext{JESSICA})\}
```



```
TBox \mathcal{T}: Man \equiv \neg \text{Woman} \sqcap \text{Person}

\mathcal{I}_1 \not\models \mathcal{T} Woman \sqsubseteq \text{Person}

Mother \equiv \text{Woman} \sqcap \exists \text{hasChild.T}

ABox \mathcal{A}: Man(STEPHEN).

\mathcal{I}_1 \models \mathcal{A} \neg \text{Man(MONICA)}.

Woman(JESSICA).

hasChild(STEPHEN, JESSICA).
```

```
\operatorname{Man}^{\mathcal{I}_1} = \{\operatorname{\mathtt{JESSICA}}, \operatorname{\mathtt{STEPHEN}} \}
\operatorname{\mathtt{Woman}}^{\mathcal{I}_1} = \{\operatorname{\mathtt{MONICA}}, \operatorname{\mathtt{JESSICA}} \}
\operatorname{\mathtt{Mother}}^{\mathcal{I}_1} = \emptyset
\operatorname{\mathtt{Person}}^{\mathcal{I}_1} = \{\operatorname{\mathtt{JESSICA}}, \operatorname{\mathtt{MONICA}}, \operatorname{\mathtt{STEPHEN}} \}
\operatorname{\mathtt{hasChild}}^{\mathcal{I}_1} = \{(\operatorname{\mathtt{STEPHEN}}, \operatorname{\mathtt{JESSICA}}) \}
```

AKSW

```
TBox \mathcal{T}: Man \equiv \neg \text{Woman} \sqcap \text{Person}
Woman \sqsubseteq \text{Person}
Mother \equiv \text{Woman} \sqcap \exists \text{hasChild.T}

ABox \mathcal{A}: Man(STEPHEN).
\neg \text{Man}(\text{MONICA}).
Woman(JESSICA).
```

```
	ext{Man}^{\mathcal{I}_2} = \{	ext{STEPHEN}\}
	ext{Woman}^{\mathcal{I}_2} = \{	ext{JESSICA, MONICA}\}
	ext{Mother}^{\mathcal{I}_2} = \emptyset
	ext{Person}^{\mathcal{I}_2} = \{	ext{JESSICA, MONICA, STEPHEN}\}
	ext{hasChild}^{\mathcal{I}_2} = \emptyset
```

hasChild(STEPHEN, JESSICA).


```
\mathsf{TBox}\;\mathcal{T}:\qquad \mathsf{Man}\equiv \neg \mathsf{Woman}\; \sqcap\, \mathsf{Person}
```

 $\mathcal{I}_2 \models \mathcal{T}$ Woman \sqsubseteq Person

 $\texttt{Mother} \equiv \texttt{Woman} \sqcap \exists \texttt{hasChild.T}$

ABox A: Man(STEPHEN).

 $\mathcal{I}_2 \not\models \mathcal{A}$ ¬Man(MONICA).

Woman(JESSICA).

hasChild(STEPHEN, JESSICA).

```
	ext{Man}^{\mathcal{I}_2} = \{	ext{STEPHEN}\}
	ext{Woman}^{\mathcal{I}_2} = \{	ext{JESSICA, MONICA}\}
	ext{Mother}^{\mathcal{I}_2} = \emptyset
	ext{Person}^{\mathcal{I}_2} = \{	ext{JESSICA, MONICA, STEPHEN}\}
	ext{hasChild}^{\mathcal{I}_2} = \emptyset
```


TBox T: Man $\equiv \neg Woman \sqcap Person$

 ${\tt Woman} \sqsubseteq {\tt Person}$

 $\texttt{Mother} \equiv \texttt{Woman} \sqcap \exists \texttt{hasChild.T}$

ABox A: Man(STEPHEN).

 \neg Man(MONICA).

Woman(JESSICA).

hasChild(STEPHEN, JESSICA).

```
	ext{Man}^{\mathcal{I}_3} = \{ 	ext{STEPHEN} \}
	ext{Woman}^{\mathcal{I}_3} = \{ 	ext{JESSICA, MONICA} \}
	ext{Mother}^{\mathcal{I}_3} = \{ 	ext{MONICA} \}
	ext{Person}^{\mathcal{I}_3} = \{ 	ext{JESSICA, MONICA, STEPHEN} \}
	ext{hasChild}^{\mathcal{I}_3} = \{ 	ext{(MONICA, STEPHEN), (STEPHEN, JESSICA)} \}
```

TBox \mathcal{T} : $Man \equiv \neg Woman \sqcap Person$

 $\mathcal{I}_3 \models \mathcal{T}$ Woman □ Person

Mother = Woman Π \exists hasChild.T

ABox A: Man(STEPHEN).

 $\mathcal{I}_3 \models \mathcal{A}$ \neg Man(MONICA).

Woman(JESSICA).

hasChild(STEPHEN, JESSICA).

 $Man^{\mathcal{I}_3} = \{STEPHEN\}$

 $Woman^{I_3} = \{JESSICA, MONICA\}$

 $Mother^{\mathcal{I}_3} = \{MONICA\}$

 $Person^{I_3} = \{JESSICA, MONICA, STEPHEN\}$

AKSW $hasChild^{I_3} = \{(MONICA, STEPHEN), (STEPHEN, JESSICA)\}$

ALC alternative Semantik

- Übersetzung von TBox-Aussagen in die Prädikatenlogik mittels der Abbildung π (rechts).
- Dabei sind C, D komplexe Klassen, R eine Rolle und A eine atomare Klasse.

$$\pi(C \sqsubseteq D) = (\forall x(\pi_x(C) \to \pi_x(D)))$$

$$\pi(C \equiv D) = (\forall x(\pi_x(C) \leftrightarrow \pi_x(D)))$$

$$\pi_x(A) = A(x)$$

$$\pi_x(\neg C) = \neg \pi_x(C)$$

$$\pi_x(C \sqcap D) = \pi_x(C) \land \pi_x(D)$$

$$\pi_x(\forall B.C) = (\forall y)(B(x,y) \to \pi_y(C))$$

$$\pi_y(A) = A(y)$$

$$\pi_y(\neg C) = \pi_y(C) \land \pi_y(D)$$

$$\pi_y(C \sqcap D) = \pi_y(C) \land \pi_y(D)$$

$$\pi_y(C \sqcap D) = \pi_y(C) \land \pi_y(D)$$

$$\pi_y(C \sqcap D) = \pi_y(C) \land \pi_y(D)$$

$$\pi_y(\forall B.C) = (\forall x)(B(y,x) \to \pi_x(C))$$

 $= (\exists x)(R(y,x)) \land \pi_x(C))$

 $\pi_{v}(\exists R.C)$

OWL und ALC

Folgende OWL DL Sprachelemente sind in \mathcal{ALC} repräsentierbar:

- Klassen, Rollen, Individuen
- Klassenzugehörigkeit, Rollenverknüpfungen
- owl:Thing und owl:Nothing
- Klasseninklusionen, -äquivalenz, -disjunktheit
- owl:intersectionOf,owl:unionOf
- owl:complementOf
- owl:allValuesFrom, owl:someValuesFrom
- rdfs:range und rdfs:domain

Gliederung

- 1 Beschreibungslogiken
- 2 ALC
- 3 OWL als SHOIN(D)
- 4 Inferenzprobleme
- 5 Tableau-Beweiser
- 6 OWL2

OWL als SHOIN(D) - Individuen

owl:sameAs

- gibt an dass zwei Individuennamen dasselbe Domänenelement bezeichnen
- DL: a = b
- FOL: Erweiterung durch Gleichheitsprädikat

owl:differentFrom

- gibt an dass zwei Individuennamen unterschiedliche Domänenelemente bezeichnen
- DL: a ≠ b
- FOL: ¬(a = b)

OWL als SHOIN(D) - Nominals

Abgeschlossene Klassen

- owl:oneOf
 - definiert eine Klasse durch vollständige Aufzählung ihrer Instanzen
 - DL: $C \equiv \{a, b, c\}$
 - FOL: $(\forall x)(C(x) \leftrightarrow (x = a \lor x = b \lor x = c))$
- owl:hasValue
 - "erzwingt" Rolle zu einem bestimmten Individuum
 - darstellbar mittels owl:someValuesFrom und owl:oneOf
 - DL: $C \equiv \exists r.\{a\}$

OWL als SHOIN(D) - Kardinalität

Zahlenrestriktionen mittels Gleichheitsprädikat

```
<owl: Class rdf:about="#Pruefung">
  <rdfs:subClassOf>
    <owl: Restriction>
      <owl:onProperty rdf:resource="#hatPruefer"/>
      <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">
      2
      </owl:maxCardinality>
    </owl: Restriction>
  </rdfs:subClassOf>
</owl: Class>
```

"Eine Prüfung kann höchstens zwei Prüfer haben."

DL: Pruefung \square < 2hatPruefer

In FOL: (P...Pruefung, h...hatPruefer)

$$(\forall x)(P(x) \rightarrow \neg(\exists x1)(\exists x2)(\exists x3)(x1 \neq x2 \land x2 \neq x3 \land x1 \neq x3 \land h(x,x1) \land h(x,x2) \land h(x,x3)))$$

Entsprechend für die anderen Zahlenrestriktionen

Entsprechend für die anderen Zahlenrestriktionen

OWL als SHOIN(D) - Rollen

rdfs:subPropertyOf

spezifiziert Unterrolle-Oberrolle-Beziehung

DL: $R \sqsubseteq S$

 $\mathsf{FOL} \colon (\forall x)(\forall y)(R(x,y) \to \mathcal{S}(x,y))$

Rollenäquivalenz: $R \equiv S$

inverse Rollen: $R \equiv S^{-1}$

Konstruktor für Rollen zur Bildung der Inversen

FOL: $(\forall x)(\forall y)(R(x,y)\leftrightarrow S(x,y))$

transitive Rollen: Trans(R)

FOL: $(\forall x)(\forall y)(\forall z)(R(x,y) \land R(y,z) \rightarrow R(x,z))$

Symmetrie: $R \equiv R^{-1}$

Funtionalität: $\top \sqsubseteq \leq 1R$

Inverse Funktionalität: $\top \sqsubseteq \le 1R^{-1}$

OWL als $\mathcal{SHOIN}(D)$ - Überblick

Erlaubt sind:

- ALC
- Gleichheit und Ungleichheit zwischen Individuen
- Abgeschlossene Klassen
- Zahlenrestriktionen
- Subrollen und Rollenäquivalenz
- Inverse und transitive Rollen
- Datentypen

DLs - Nomenklatur

- ALC: Attribute Language with Complement
- S: ALC + Rollentransitivität
- H: Subrollenbeziehung
- O: abgeschlossene Klassen
- I: inverse Rollen
- \mathcal{N} : Zahlenrestrktionen $\leq nR$ etc.
- Q: Qualifizierende Zahlenrestriktionen $\leq nR.C$ etc.
- (D): Datentypen
- F: Funktionale Rollen

- OWL DL ist SHOIN(D)
- OWL Lite ist SHIF(D)

DL-Syntax - Übersicht

Concepts		
Atomic	A, B	
Not	$\neg C$	
And	$C\sqcap D$	
Or	$C \sqcup D$	
Exists	∃R.C	
For all	∀R.C	
At least	$\geq nR.C(\geq nR)$	
At most	$\leq nR.C(\leq nR)$	
Nominal	$i_1,,i_n$	
Roles		
Atomic	R	
Inverse	R^-	

Concept Axioms (TBox)			
Subclass	$C \sqsubseteq D$		
Equivalent	$C\equiv D$		
Role Axioms (RBox)			
Subrole	$R \sqsubseteq S$		
Transitivity	Trans(S)		
Assertional Axioms (ABox)			
Instance	C(a)		
Role	R(a, b)		
same	a = b		
different	a ≠ b		

 $S = \overline{\mathcal{ALC}} + \overline{\text{Transitivity OWL}}$ **DL** = SHOIN(**D**) (D: concrete domain)

DL-Syntax - Klassenkonstruktoren

Constructor	DL-Syntax	Example	FOL Syntax
intersectionOf	$C_1 \sqcap \sqcap C_n$	Human ⊓ Male	$C_1 \wedge \wedge C_n$
unionOf	$C_1 \sqcup \sqcup C_n$	Doctor ⊔ Lawyer	$C_1 \vee \vee C_n$
complementOf	$\neg C$	¬Male	$\neg C(x)$
oneOf	$\{x_1\}\sqcup\sqcup\{x_n\}$	john ⊔ mary	$X = X_1 \vee \vee X = X_n$
allValuesFrom	∀P.C	∀ hasChild.Doctor	$\forall y.P(x,y) \rightarrow C(y)$
someValuesFrom	∃P.C	∃ hasChild.Lawyer	$\exists y. P(x,y) \land C(y)$
maxCardinality	\leq n P	≤1 hasChild	$\exists^{\leq n} y. P(x, y)$
minCardinality	≥ n P	≥2 hasChild	$\exists^{\geq n} y. P(x, y)$

Beliebig komplexes Schachteln von Konstruktoren erlaubt.

Person $\neg \forall hasChild.(Doctor \sqcup \exists hasChild.Doctor)$

DL-Syntax - Axiome

Axiom	DL-Syntax	Example
subClassOf	$C_1 \sqsubseteq C_2$	Human ⊑ Animale ⊓ Biped
equivalentClass	$C_1 \equiv C_2$	Man ≡ Human ⊓ Male
disjointWith	$C_1 \sqsubseteq \neg C_2$	Male ⊑ ¬Female
sameAs	$x_1 \equiv x_2$	President_Bush ≡ G_W_Bush
differentFrom	$X_1 \sqsubseteq \neg X_2$	john ⊑ ¬peter
subPropertyOf	$P_1 \sqsubseteq P_2$	hasDaughter ⊑ hasChild
equivalentProperty	$P_1 \equiv P_2$	cost ≡ price
inverseOf	$P_1 \equiv P_2^-$	$hasChild \equiv hasParent^-$
transitiveProperty	$P^+ \sqsubseteq P$	$ancestor^+ \sqsubseteq ancestor$
functionalProperty	⊤ <u>⊑</u> ≤ 1 <i>P</i>	T ⊑≤ 1 <i>hasMother</i>
inverseFunctionalProperty	⊤ ⊑≤ 1 <i>P</i> −	T ⊑≤ 1 <i>hasSSN</i> [−]

General Class Inclusion (\sqsubseteq) genügt: $C \equiv D$ gdw ($C \sqsubseteq D$ und $D \sqsubseteq C$)

Offensichtliche FOL-Äquivalenzen:

Wissensmodellierung OWA vs. CWA

OWA = Open World Assumption
Die Existenz von weiteren Individuen ist möglich, sofern sie nicht explizit ausgeschlossen wird.

OWL verwendet OWA!

CWA = Closed World Assumption Es wird angenommen, dass die Wissensbasis alle Individuen enthält.

Wissensmodellierung OWA vs. CWA

OWA = Open World Assumption Die Existenz von weiteren Individuen ist möglich, sofern sie nicht explizit ausgeschlossen wird.

OWL verwendet OWA!

CWA = Closed World Assumption
Es wird angenommen, dass die Wissensbasis alle Individuen enthält.

\mathcal{K}	query	DL answer	Prolog
child(Bill,Bob)	$\mathcal{K} \models \forall child.Man(Bill)$	don't know	yes
Man(Bob)			

Wissensmodellierung OWA vs. CWA

OWA = Open World Assumption
Die Existenz von weiteren Individuen ist möglich, sofern sie nicht explizit ausgeschlossen wird.

OWL verwendet OWA!

CWA = Closed World Assumption
Es wird angenommen, dass die Wissensbasis alle Individuen enthält.

$\mathcal K$	query	DL answer	Prolog
child(Bill,Bob) Man(Bob)	$\mathcal{K} \models \forall child.Man(Bill)$	don't know	yes
$+ \leq 1$ child. $T(Bill)$	$\mathcal{K} \models \forall child.Man(Bill)$	yes	yes

Wissensbasen:

- K1 = { hasChild(Anna, Bob) }
- K2 = { Female(Anna) }

Ist Anna Instanz von ∃*hasChild*?

Wissensbasen:

- K1 = { hasChild(Anna, Bob) }
- K2 = { Female(Anna) }

Ist Anna Instanz von ∃hasChild?

Ja, in K1. Nein, in K2.

Wissensbasen:

- K1 = { hasChild(Anna, Bob) }
- K2 = { Female(Anna) }

Ist Anna Instanz von ∃hasChild?

Ja, in K1. Nein, in K2.

Ist Anna Instanz von ¬∃hasChild?

Wissensbasen:

- K1 = { hasChild(Anna, Bob) }
- K2 = { Female(Anna) }

Ist Anna Instanz von ∃*hasChild*?

Ja, in K1. Nein, in K2.

Ist Anna Instanz von ¬∃hasChild?

Nein, in K1. Nein, in K2.

Grund: Open World Assumption (Wir wissen nicht, ob Anna in K2 ein Kind hat.)

AKSV

K3 = {hasChild(Anna, Bob), hasChild(Anna, Charlie)}

Ist Anna Instanz von = 2 hasChild in K3?

K3 = {hasChild(Anna, Bob), hasChild(Anna, Charlie)}

Ist Anna Instanz von = 2 hasChild in K3?

Nein, Anna könnte mehr Kinder haben.

K3 = {hasChild(Anna, Bob), hasChild(Anna, Charlie)}

Ist Anna Instanz von = 2 hasChild in K3?

Nein, Anna könnte mehr Kinder haben.

```
 \begin{tabular}{l} K4 = \\ \{(\leq 2 hasChild)(Anna), hasChild(Anna, Bob), hasChild(Anna, Charlie)\} \\ \end{tabular}
```

Ist Anna Instanz von = 2 hasChild in K4?

K3 = {hasChild(Anna, Bob), hasChild(Anna, Charlie)}

Ist Anna Instanz von = 2 hasChild in K3?

Nein, Anna könnte mehr Kinder haben.

 $\begin{tabular}{l} K4 = \\ \{(\leq 2 hasChild)(Anna), hasChild(Anna, Bob), hasChild(Anna, Charlie)\} \\ \end{tabular}$

Ist Anna Instanz von = 2 hasChild in K4?

Nein, da Bob und Charlie sich auf die gleiche Person beziehen können (OWL macht keine **unique names assumption** - siehe owl:sameAs oder owl:differentFrom).

Gliederung

- 1 Beschreibungslogiken
- 2 ALC
- 3 OWL als SHOIN(D)
- 4 Inferenzprobleme
- 5 Tableau-Beweiser
- 6 OWL2

Wichtige Inferenzprobleme

Globale Konsistenz der Wissensbasis

 Ist Wissensbasis sinnvoll? (Semantik: Hat K ein Modell?)

Klassenkonsistenz

• Muss Klasse C leer sein?

Klasseninklusion (Subsumption)

Strukturierung der Wissensbasis

Klassenäquivalenz

Sind zwei Klassen eigentlich dieselbe?

Klassendisjunktheit

Sind zwei Klassen disjunkt?

Klassenzugehörigkeit

Ist Individuum a in der Klasse C?
 Instanzgenerierung (Retrieval) "alle x mit

C(x) finden"

 Finde alle (bekannten!) Individuen zur Klasse C. $\mathcal{K} \models \mathsf{false}$?

C = +?

 $C \sqsubseteq D$?

 $C \equiv D$?

 $C \sqcap D = \bot$?

C(a)?

Entscheidbarkeit von OWL DL

- Entscheidbarkeit: zu jedem Inferenzproblem gibt es einen immer terminierenden Algorithmus
- OWL DL ist Fragment von FOL, also k\u00f6nnten (im Prinzip)
 FOL-Inferenzalgorithmen (Resolution, Tableaux) verwendet werden.
- Diese terminieren aber nicht immer!
- Problem: Finde immer terminierende Algorithmen! Keine "naiven"Lösungen in Sicht!

Rückführung auf Unerfüllbarkeit

- Wir werden Tableauverfahren für OWL DL bzw. ALC abwandeln.
- Tableau- und Resolutionsverfahren zeigen Unerfüllbarkeit einer Theorie
- Rückführung der Inferenzprobleme auf das Finden von Inkonsistenzen in der Wissensbasis, d.h. zeigen der Unerfüllbarkeit der Wissensbasis!

Rückführung auf Unerfüllbarkeit

- Klassenkonsistenz $C \equiv \bot$ gdw. $KB \cup \{C(a)\}$ unerfüllbar (a neu)
- Klasseninklusion(Subsumption) $C \sqsubseteq D$ gdw. $KB \cup \{C \sqcap \neg D(a)\}$ unerfüllbar (a neu)
- Klassenäquivalenz $C \equiv D$ gdw. $C \sqsubseteq D$ und $D \sqsubseteq C$
- Klassendisjunktheit $C \sqcap D = \bot$ gdw. $KB \cup \{(C \sqcap D)(a)\}$ unerfüllbar (a neu)
- Klassenzugehörigkeit C(a) gdw. $KB \cup \{(\neg C(a)\} \text{ unerfüllbar } (a \text{ neu}) \}$
- Instanzgenerierung (Retrieval) alle C(x) finden
 - Prüfe Klassenzugehörigkeit für alle Individuen.
 - Schwerer, dies gut zu implementieren!

Gliederung

- 1 Beschreibungslogiken
- 2 ALC
- 3 OWL als SHOIN(D)
- 4 Inferenzprobleme
- 5 Tableau-Beweiser
- 6 OWL2

Tableau - Transformation in NNF

Gegeben eine Wissensbasis W.

- Ersetze $C \equiv D$ durch $C \sqsubseteq D$ und $D \sqsubseteq C$.
- Ersetze $C \sqsubseteq D$ durch $\neg C \sqcup D$.
- Wende die Regeln auf der folgenden Folie an, bis es nicht mehr geht.

Resultierende Wissensbasis: NNF(W)

- Negationsnormalform von W.
- Negation steht nur noch direkt vor atomaren Klassen.

Tableau - Transformation in NNF

```
NNF(C)
                     = C, falls C atomar ist
NNF(\neg C)
                     = \neg C, falls C atomar ist
NNF(\neg \neg C) = NNF(C)
NNF(C \sqcup D) = NNF(C) \sqcup NNF(D)
NNF(C \sqcap D)
               = NNF(C) \sqcap NNF(D)
NNF(\neg(C \sqcup D)) = NNF(\neg C) \sqcap NNF(\neg D)
NNF(\neg(C \sqcap D))
                   = NNF(\neg C) \sqcup NNF(\neg D)
NNF(\forall R.C)
                    = \forall R.NNF(C)
NNF(\exists R.C) = \exists R.NNF(C)
NNF(\neg \forall R.C) = \exists R.NNF(\neg C)
NNF(\neg \exists R.C)
                   = \forall R.NNF(\neg C)
```

W und NNF(W) sind logisch äquivalent.

$$P \sqsubseteq (E \sqcap U) \sqcup \neg (\neg E \sqcup D)$$

$$P \sqsubseteq (E \sqcap U) \sqcup \neg (\neg E \sqcup D)$$

• Subklasse auflösen: $\neg P \sqcup ((E \sqcap U) \sqcup \neg (\neg E \sqcup D))$

$$P \sqsubseteq (E \sqcap U) \sqcup \neg (\neg E \sqcup D)$$

- Subklasse auflösen: $\neg P \sqcup ((E \sqcap U) \sqcup \neg (\neg E \sqcup D))$
- Negation nach innen: $\neg P \sqcup (E \sqcap U) \sqcup (\neg \neg E \sqcap \neg D)$

$$P \sqsubseteq (E \sqcap U) \sqcup \neg (\neg E \sqcup D)$$

- Subklasse auflösen: $\neg P \sqcup ((E \sqcap U) \sqcup \neg (\neg E \sqcup D))$
- Negation nach innen: $\neg P \sqcup (E \sqcap U) \sqcup (\neg \neg E \sqcap \neg D)$
- Endergebnis Negationsnormalform: $\neg P \sqcup (E \sqcap U) \sqcup (E \sqcap \neg D)$

Naives Tableauverfahren

Rückführung auf Unerfüllbarkeit/Widerspruch

Idee:

- Gegeben Wissensbasis W.
- Erzeugung von Konzequenzen der Form C(a) und $\neg C(a)$, bis Widerspruch gefunden.

Tableau einfaches Beispiel

Wissenbasis:

C(a)

 $(\neg C \sqcap D)(a)$

Tableau einfaches Beispiel

Wissenbasis:

C(a)

 $(\neg C \sqcap D)(a)$

 $\neg C(a)$ ist logische Konzequenz

Widerspruch ist gefunden.

Tableau weiteres Beispiel

$$C(a)$$
 $\neg C \sqcup D$ $\neg D(a)$

Ableitung von Konzequenzen:

C(a)

 $\neg D(a)$

 $(\neg C \sqcup D)(a)$

Nur Fallunterscheidung

- ¬C(a)
 Widerspruch
- D(a)Widerspruch

Teilen des Tableaus in zwei Zweige.

Tableau - Definitionen

- Tableauzweig:
 Endliche Menge von Aussagen der Form C(a), ¬C(a), R(a, b).
- Tableau: Endliche Menge von Tableauzweigen.
- Tableauzweig ist abgeschlossen wenn er ein Paar Wiedersprüchlicher Aussagen C(a) und ¬C(a) enthält.
- Tableau ist abgeschlossen, wenn jeder Zweig von ihm abgeschlossen ist.

Tableau - Erzeugung

Name	Auswahl	Aktion
C_A	$C(a) \in W$ (ABox)	Füge $C(a)$ hinzu.
$R_{\mathcal{A}}$	$R(a,b) \in W$ (ABox)	Füge R(a, b) hinzu.
C	$C \in W$ (TBox)	Füge $C(a)$ für ein bekanntes Individuum a
		hinzu.
П	$(C \sqcap D)(a) \in A$	Füge $C(a)$ und $D(a)$ hinzu.
Ц	$(C \sqcup D)(a) \in A$	Dupliziere den Zweig. Füge zum einen
		Zweig $C(a)$ und zum anderen Zweig $D(a)$
		hinzu.
3	(∃ <i>R</i> . <i>C</i>)(<i>a</i>) ∈ <i>A</i>	Füge $R(a, b)$ und $C(b)$ für neues Individuum
		<i>b</i> hinzu.
A	(∀ <i>R</i> . <i>C</i>)(<i>a</i>) ∈ <i>A</i>	Falls $R(a,b) \in A$, so füge $C(b)$ hinzu.

- Ist das resultierende Tableau abgeschlossen, so ist die ursprüngliche Wissensbasis unerfüllbar.
- Man wählt dabei immer nur solche Elemente aus, die auch wirklich zu neuen Elementen im Tableau führen. Ist dies nicht möglich, so terminiert der Algorithmus und W ist erfüllbar.

- P ... Professor
 - E ... Person
 - U ... Universitätsangehöriger
 - D ... Doktorand
- Wissensbasis: $P \sqsubseteq (E \sqcap U) \sqcup (E \sqcap \neg D)$

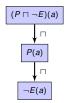
Ist
$$P \sqsubseteq E$$
 logische Konzequenz?

Wissensbasis (mit Anfrage) in NNF:

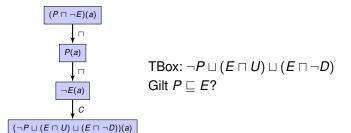
$$\{\neg P \sqcup (E \sqcap U) \sqcup (E \sqcap \neg D), (P \sqcap \neg E)(a)\}$$

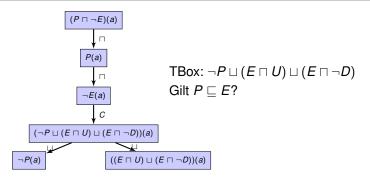
 $(P \sqcap \neg E)(a)$

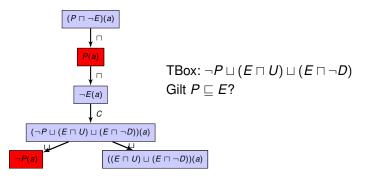
TBox: $\neg P \sqcup (E \sqcap U) \sqcup (E \sqcap \neg D)$ Gilt $P \sqsubseteq E$?

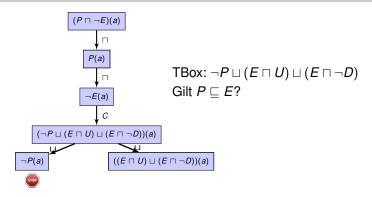


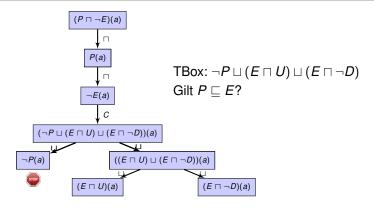
TBox: $\neg P \sqcup (E \sqcap U) \sqcup (E \sqcap \neg D)$ Gilt $P \sqsubseteq E$?

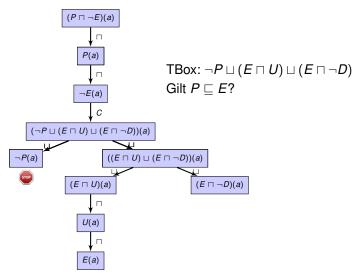


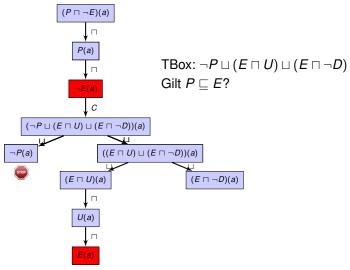


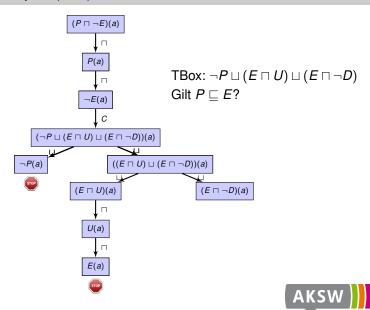


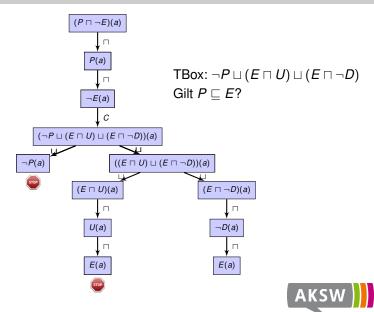


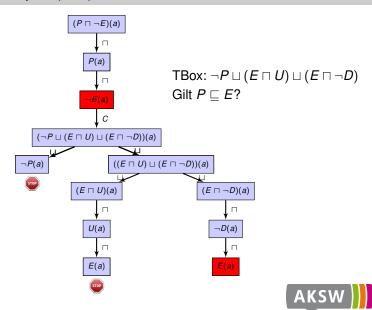


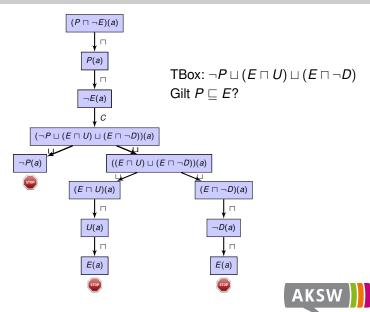


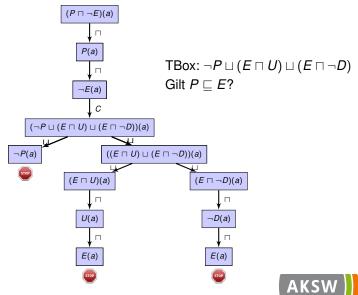












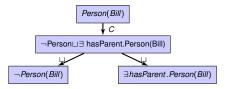
Alle Pfade abgeschlossen \rightarrow Wissensbasis unerfüllbar \rightarrow $P \sqsubseteq E$.

Person(Bill)

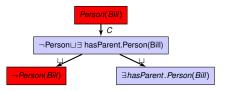
Einziges Axiom:¬*Person* ⊔ ∃*hasParent*.*Person*



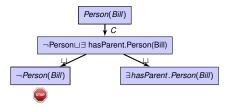
Einziges Axiom:¬*Person* ⊔ ∃*hasParent.Person*



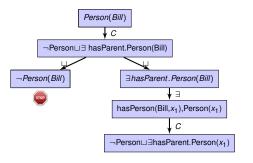
Einziges Axiom:¬*Person* ⊔ ∃*hasParent.Person*



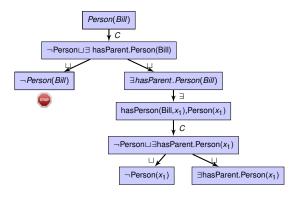
Einziges Axiom:¬*Person* ⊔ ∃*hasParent.Person*



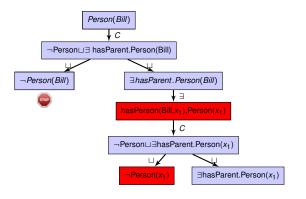
Einziges Axiom:¬*Person* ⊔ ∃*hasParent.Person*



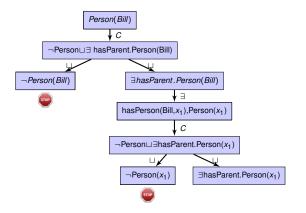
Einziges Axiom:¬*Person* ⊔ ∃*hasParent.Person*



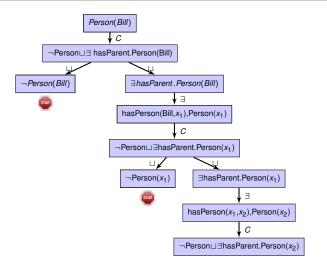
Einziges Axiom:¬*Person* ⊔ ∃*hasParent.Person*



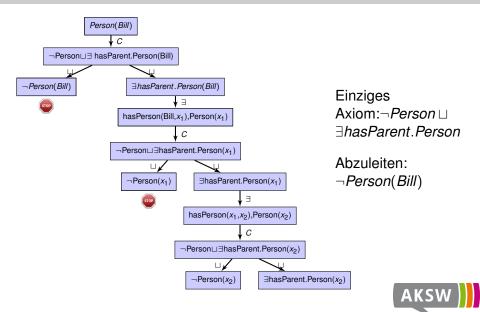
Einziges Axiom:¬*Person* ⊔ ∃*hasParent.Person*

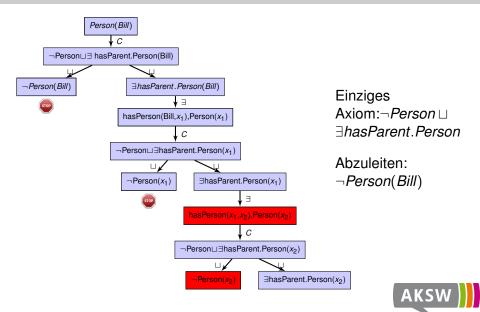


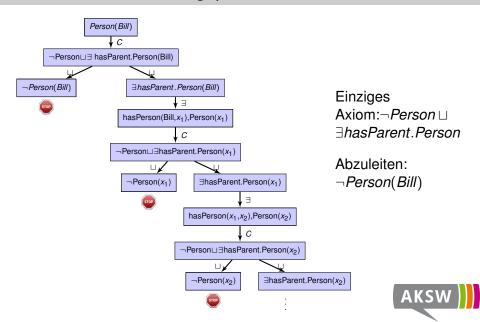
Einziges Axiom:¬*Person* ⊔ ∃*hasParent.Person*

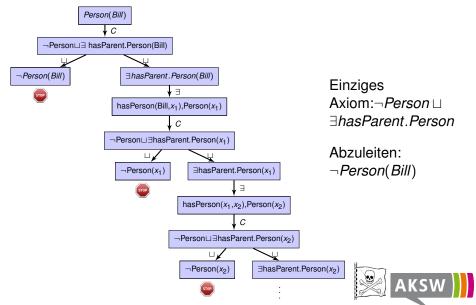


Einziges Axiom:¬*Person* ⊔ ∃*hasParent.Person*





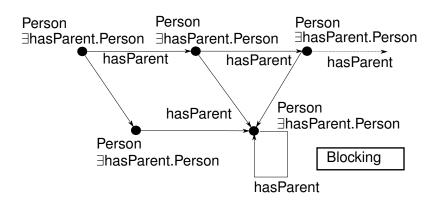




Problem tritt auf durch Existenzquantoren (und minCardinality)

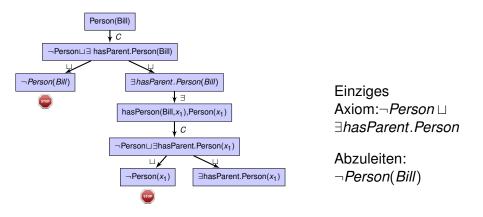
Tableau - Blocking - Idee

Wir haben folgendes konstruiert:



D.h. Wiederverwendung alter Knoten! Es muss natürlich formal nachgewiesen werden, dass das ausreicht!

Tableau mit Blocking



$$\sigma(\textit{Bill}) = \{\textit{Person}, \neg \textit{Person} \sqcup \exists \textit{hasParent.Person}, \exists \textit{hasParent.Person} \}$$
 $\sigma(x_1) = \{\textit{Person}, \neg \textit{Person} \sqcup \exists \textit{hasParent.Person}, \exists \textit{hasParent.Person} \}$
 $\sigma(x_1) \subseteq \sigma(\textit{Bill}), \text{ d.h. Bill blockt } x_1$

Tableau - Blocking - Definition

Die Auswahl von $(\exists R.C)(a)$ im Tableauzweig A ist

blockiert, falls es ein Individuum b gibt, so dass $\{C|C(a)\in A\}\subseteq \{C|C(b)\in A\}$ ist.

Zwei Möglichkeiten der Terminierung:

- Abschluss des Tableaus.
 Dann Wissensbasis unerfüllbar.
- Weine ungeblockte Auswahl führt zu Erweiterung. Dann Wissensbasis erfüllbar.

Tableau für OWL DL

Die Grundidee ist dieselbe!

Kompliziertere Blockingregeln müssen verwendet werde.

 Reasonerimplementierungen arbeiten oft mit zahlreichen Optimierungen wegen problematischer Performance einer "naiven, Implementierung.

Tableau - Beweiser

- Fact
 - http://www.cs.man.ac.uk/~horrocks/FaCT/
 - SHIQ.
- Fact++
 - http://owl.man.ac.uk/factplusplus/
 - SHOIQ(D)
- Pellet
 - http://clarkparsia.com/pellet/
 - SHOIN(D)
- RacerPro
 - http://www.sts.tu-harburg.de/~r.f.moeller/racer/
 - SHIQ(D)
- HermIT
 - http://www.hermit-reasoner.com
 - Hypertableau-Kalkül

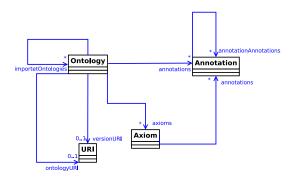
Gliederung

- 1 Beschreibungslogiken
- 2 ALC
- (3) OWL als SHOIN(D)
- 4 Inferenzprobleme
- 5 Tableau-Beweiser
- 6 OWL2

OWL 2

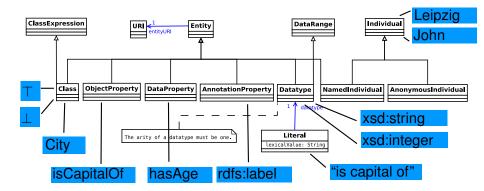
- Praktische Anwendung von OWL 1 legte Probleme offen, dienicht schwerwiegend sind, aber in der Menge zur Arbeit an neuer Spezifikation geführt haben
- Basiert auf Beschreibungslogik SROIQ(D)
- Quellen/Literatur:
 - W3C OWL2 Spezifikation
 - Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan Parsia,
 Peter Patel-Schneider, and Ulrike Sattler. OWL 2: The next step for OWL. Journal of Web Semantics, 2008.
- Spezifikation verwendet 22 UML Klassendiagrame (siehe folgende Folien)

OWL 2 - Ontologie Struktur

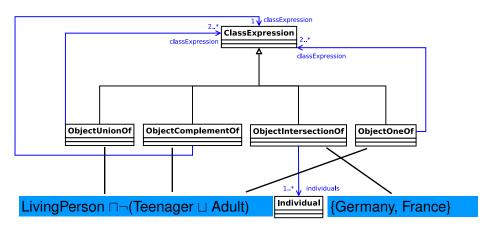


- Wie bisher:
 - Ontologie = Menge von Axiomen (+ Kopf)
 - 1 Axiom = 1...n RDF Triple
- Physikalischer Ort muss Versions-URI entsprechen (falls vorhanden) und aktuelle Version muss an ontology URI zu finden sein (falls vorhanden)

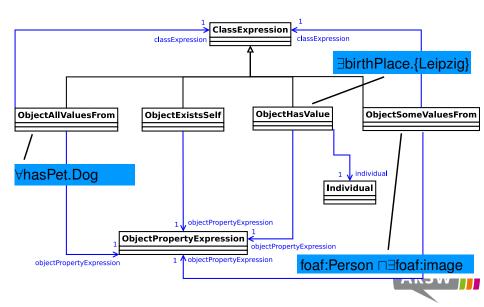
OWI 2 - Entities



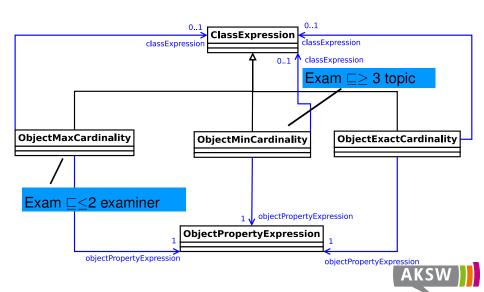
OWL 2 – Class Expressions



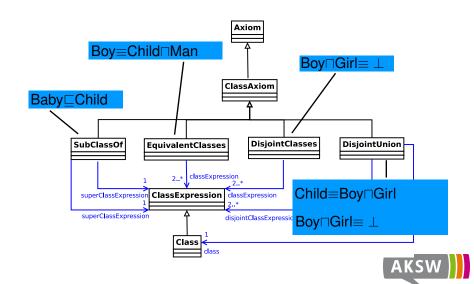
OWL 2 - Class Expressions



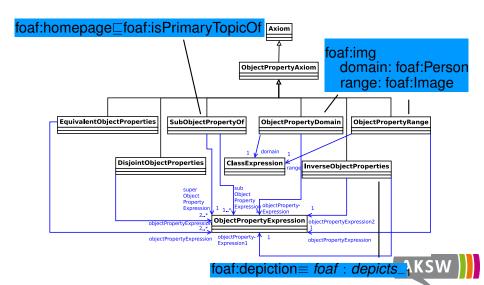
OWL 2 - Class Expressions



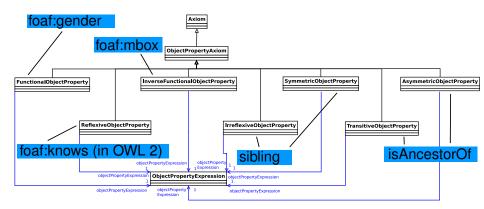
OWL 2 - Axioms



OWL 2 - Axioms



OWL 2 - Axioms



Unterschiede zwischen OWL 1 und OWL 2

- Ausdrucksstärke (Auszug):
 - Qualified number restrictions: > 2hasChild.male

 - Properties of properties: reflexive, irreflexive, asymmetric
 - Datatypes:

 - Unterstütze Datentypen: owl:boolean, owl:string, xsd:integer, xsd:dateTime, xsd:hexBinary, owl:real, ...
 - Easy keys / unique identifiers:
 HasKey(Person ssn)
 HasKey(Transplantation donor recipient organ)

Unterschiede zwischen OWL 1 und OWL 2

- Verwendung von MOF/UML zur Spezifikation
- Typisierung in OWL 2 DL weniger restriktiv, z.B. kann eine
 URI sowohl eine Klasse als auch ein Individual bezeichnen:
 Eagle(Harry)
 EndangeredSpecies(Eagle)
- Annotierung von Axiomen und Entities, z.B. (in funktionaler Syntax) ClassAssertion(Annotation(author Jens) Annotation(confidence 0.95/wl:real)
 OWL2 GreatOntologyLanguage)

OWL 2 Profile (EL, RL, QL)

- OWL 2 Full
 - OWL-RL Full: skalierbares Reasoning mit Regeln; Obermenge von RDFS
- OWL 2 DL
 - OWL-RL DL: ähnlich wie OWL-R Full, aber Untermenge von OWL
 2 DL
 - EL++: satisfiability, instance checks, subsumption, classification in polynomieller Zeit
 - QL: korrektes und vollständiges Reasoning in logspace; entspricht ungefähr Features von UML und ER Diagrammen

OWL 2 Tool-Unterstützung

- APIs: OWL API, KAON2
- Editors: Protégé, TopBraid
- Reasoning:
 - OWL 2 DL: Pellet, FaCT++
 - OWL 2 EL: CEL
 - OWL 2 QL: QuONto, Owlgres
 - OWL 2 RL: Oracle 11g
- o ...

Danke für die Aufmerksamkeit!

