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Executive summary

This report documents a survey about modelling errors and problems in se-
mantic web knowledge bases. It identifies different types of errors which
can typically occur during the creation and lifecycle of knowledge bases like
OWL ontologies or interlinked data. Additionally, an overview about exist-
ing tool support is given. This will show which tool covers which kinds of
errors/problems. From this overview, we conclude with requirements for the
ontology repair and enrichment (ORE) tool in LOD2.
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Chapter 1

Introduction

The number of data sets published in the Semantic Web has seen a steep rise
over the past years. While the quantity of data is continuously increasing,
its quality is still considered problematic. For instance, in a position pa-
per [19], it has been claimed that “Linked Data is merely more data”. One
particular problem are syntactic, structural and semantic errors in Semantic
Web knowledge bases, which are the scope of this survey. While it is widely
acknowledged that completely resolving those problems is impossible given
the size, heterogeneity and decentralised nature of the Web of Data, reducing
the frequency of errors would enable an easier use of existing knowledge. In
particular, modelling errors and other problems can prevent reasoning over
data, integrating data or even accessing data.

Those modelling errors and other problems in semantic data can occur on
different levels. In this report, we first distinguish between the most common
error types: syntactic and semantic errors. Syntactic errors are mainly vio-
lations of conventions of the language in which the ontology is modelled, e.g.
the validity of XML, whereas semantic errors are considered in this report
as contradictions in the underlying formal logics. Another type of problem
we consider are structural errors. By this, we basically mean problems in
the taxonomy, like for example circularities. Beyond this distinction there
are two additional more task-focused types we will analyse: (a) tools and
methods which allow to detect problems which negatively affect the perfor-
mance of reasoning over expressive knowledge bases and (b) problems which
are the specific to publishing RDF using the Linked Data principles. In the
following sections we will discuss those errors in detail.

We begin with a preliminaries part (Chap. 2) to provide a basis for the
rest of the report. In the subsequent Chapter 3, we will describe the different
types of problems and errors that can occur during the life-cycle of ontological
knowledge bases. In particular, the chapter contains sections about syntactic
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errors (Sec. 3.1), semantic errors (Sec. 3.2), errors in the taxonomy (Sec. 3.3),
problems which can decrease the performance of tableau-based reasoners
(Sec. 3.4) and problems which can be found in the context of Linked Data
(Sec. 3.5) After that, in Chapter 4 we will give an overview of existing tools
which have been developed to detect some of these errors.
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Chapter 2

Preliminaries

2.1 Ontology

The word ”ontology” is used with different meanings in different communi-
ties. The most radical difference is perhaps between the philosophical sense
and the computational sense. The first one stands for a branch of philosophy
which deals with the nature and structure of ”reality”. In the second case,
which emerged in the recent years in the knowledge engineering community
and reflects the most prevalent use in Computer Science, an ontology can
be understood as a ”formal, explicit specification of a shared conzeptual-
ization”(Studer et al.[34]). A conceptualization can informal be seen as an
abstract, simplified view of the world that we wish to represent for some pur-
pose, containing the objects, concepts, and other entities that are assumed
to exist and the relationship among them. Formal refers to the fact that the
expressions must be machine readable, hence natural language is excluded.

2.2 Description Logics

In this section, we introduce description logics including their syntax and
semantics.

Description logics is the name of a family of knowledge representation
(KR) formalisms. They emerged from earlier KR formalisms like semantic
networks and frames. Their origin lies in the work of Brachman on struc-
tured inheritance networks [7]. Since then, description logics have enjoyed
increasing popularity. They can essentially be understood as fragments of
first-order predicate logic. They have less expressive power, but usually de-
cidable inference problems and a user-friendly variable free syntax.

Description logics represent knowledge in terms of objects, concepts, and
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roles. Concepts formally describe notions in an application domain, e.g.
one could define the concept of being a father as “a man having a child”
(Father ≡ Man u ∃hasChild.> in DL notation). Objects are members of
concepts in the application domain and roles are binary relations between
objects. Objects correspond to constants, concepts to unary predicates, and
roles to binary predicates in first-order logic.

In description logic systems information is stored in a knowledge base. It
is sometimes divided in two parts: TBox and ABox. The ABox contains
assertions about objects. It relates objects to concepts and other objects via
roles. The TBox describes the terminology by relating concepts and roles.
For some expressive description logics this clear separation does not exist.
Furthermore, the notion of an RBox, which contains knowledge about roles,
is sometimes used in expressive description logics. We will usually consider
those axioms as part of the TBox in this report.

As mentioned before, DLs are a family of KR formalisms. We use the
terms description language and description logic synonymously for one par-
ticular element of this family. First, we introduce the ALC description logic
as an example language. ALC is a proper fragment of OWL [18] and is
generally considered to be a prototypical description logic for research inves-
tigations. ALC stands for attributive language with complement. It allows to
construct complex concepts from simpler ones using various language con-
structs. The next definition shows how such concepts can be built.

Definition 2.2.1 (Syntax of ALC concepts)
Let NR be a set of role names and NC be a set of concept names (NR∩NC =
∅). The elements of NC are also called atomic concepts. The set of ALC
concepts is inductively defined as follows:

1. Each atomic concept is an ALC concept.

2. If C and D are ALC concepts and r ∈ NR a role, then the following
are also ALC concepts:

• > (top), ⊥ (bottom)

• C tD (disjunction), C uD (conjunction), ¬C (negation)

• ∀r.C (value/universal restriction), ∃r.C (existential restriction) �

Example 2.2.2 (ALC concepts)
Some examples of complex concepts in ALC are:

• Man u ∃hasChild.>
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• Man u ∃hasChild.(Rich t Beautiful)

• Man u ∃hasChild.¬Adult

• Man u ∃hasChild.∀hasFriend.ComputerScientist

Other description languages are usually named according to the expres-
sive features they support. The choice of language is usually a tradeoff be-
tween expressivity and complexity of reasoning. The description logic nav-
igator1 provides detailed information about the complexity of a particular
language. The following is a list of commonly used letters in the description
logic naming scheme along with their meaning (note that if one feature can
be expressed using other ones the letter is usually omitted in the language
name).

S ALC + transitivity: For a transitive role r, we have that r(a, b) and
r(b, c) implies r(a, c).

H subroles: r v s says that r is a subrole of s, i.e. r(a, b) implies s(a, b).

I inverse roles: r− denotes the inverse role of r, i.e. r−1(a, b) iff r(b, a).

O nominals: Sets of objects can be used to construct concepts, e.g. {MONICA}
denotes the singleton set, which only contains MONICA. Nominals are
useful in cases where the instances of a concept should be enumerated,
e.g. the members of the European Union.

N number restrictions: Allows constructs of the form ≥ n r and ≤ n r
to build concepts. This is useful if one wants to define a concept like
”mother of at least three children” (Woman u ≥ 3 hasChild).

Q qualified number restrictions: Concept constructors of the form ≥
n r.C and ≤ n r.C can be used. If C is the top concept, this is
equivalent to unqualified number restrictions. This is useful to define
a concept like ”mother of at least three male children” (Woman u ≥
3 hasChild.Male).

F functional roles: Allows to express that a role r is functional, i.e. has
at most one filler, which is equivalent to the axiom > v ≤ 1 r.

1http://www.cs.manchester.ac.uk/~ezolin/dl/
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R complex role inclusions: Axioms of the form r◦s v r (or r◦s v s) state
that when r(a, b) and s(b, c) holds, then r(a, c) (or s(a, c)) also holds.
For instance, we could use the axiom locatedIn◦partof v locatedIn

to model the part of relationship for locations. Now, if we know that
Leipzig is located in Saxony and Saxony is part of Germany, we can
infer that Leipzig is located in Germany.

E existential quantification: If there exists an instance b with r(a, b) and
b is instance of C, then a is instance of ∃r.C.

D data types: Data types are used to incorporate different kinds of data,
e.g. numbers or strings. This allows, for instance, to define the concept
of an old person as a person of age 65 or higher.

While ALC is seen as a prototypical language and foundation for more
expressive languages, there has also been a lot of research effort for simple
languages with often tractable inference problems. Two of those languages,
which are referred to within the deliverable are AL and EL:
AL is inductively defined as follows: >, ⊥, ∃r.>, A, ¬A with A ∈ NC ,

r ∈ NR are AL concepts. If C and D are AL concepts, then C uD is an AL
concept. If C is an AL concept and r a role, then ∀r.C is an AL concept.
EL is inductively defined as follows: >, A with A ∈ NC are EL concepts.

If C and D are EL concepts and r ∈ NR, then C u D and ∃r.C are EL
concepts.

The semantics of concepts is defined by means of interpretations. See the
following definition and Table 2.1 listing common concept constructors.

Definition 2.2.3 (Interpretation)
An interpretation I consists of a non-empty interpretation domain ∆I and
an interpretation function ·I , which assigns to each A ∈ NC a set AI ⊆ ∆I

and to each r ∈ NR a binary relation rI ⊆ ∆I ×∆I . �

Example 2.2.4 (Interpreting Concepts)
Let the interpretation I be given by:

∆I = {MONICA, JESSICA, STEPHEN}
WomanI = {MONICA, JESSICA}

hasChildI = {(MONICA, STEPHEN), (STEPHEN, JESSICA)}

We then have:

(Woman u ∃hasChild.>)I = {MONICA}
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construct syntax semantics
atomic concept A AI ⊆ ∆I

role r rI ⊆ ∆I ×∆I

nominals {o} {o}I ⊆ ∆I , |{o}|I = 1
top concept > ∆I

bottom concept ⊥ ∅
conjunction C uD (C uD)I = CI ∩DI
disjunction C tD (C tD)I = CI ∪DI
negation ¬C (¬C)I = ∆I \ CI
exists restriction ∃r.C (∃r.C)I = {a | ∃b.(a, b) ∈ rI and b ∈ CI}
value restriction ∀r.C (∀r.C)I = {a | ∀b.(a, b) ∈ rI implies b ∈ CI}
atleast restriction ≥ n r.C (≥ n r)I = {a | |({b | (a, b) ∈ rI}| ≥ n}
atmost restriction ≤ n r.C (≤ n r)I = {a | |({b | (a, b) ∈ rI}| ≤ n}

Table 2.1: Syntax and semantics for concepts in SHOIN .

In the most general case, terminological axioms are of the form C v D
or C ≡ D, where C and D are (complex) concepts. The former axioms are
called inclusions and the latter equivalences. An equivalence whose left hand
side is an atomic concept is a concept definition. In some languages with low
expressivity, like AL, terminological axioms are restricted to definitions. We
can define the semantics of terminological axioms in a straightforward way.
An interpretation I satisfies an inclusion C v D if CI ⊆ DI and it satisfies
the equivalence C ≡ D if CI = DI . I satisfies a set of terminological axioms
iff it satisfies all axioms in the set. An interpretation, which satisfies a (set
of) terminological axiom(s) is called a model of this (set of) axiom(s). Two
(sets of) axioms are equivalent if they have the same models. A finite set
T of terminological axioms is called a (general) TBox. Let NI be the set of
object names (disjoint with NR and NC). An assertion has the form C(a)
(concept assertion), r(a, b) (role assertion), where a, b are object names, C
is a concept, and r is a role. An ABox A is a finite set of assertions.

Objects are also called individuals. To allow interpreting ABoxes we
extend the definition of an interpretation. In addition to mapping concepts
to subsets of our domain and roles to binary relations, an interpretation
has to assign to each individual name a ∈ NI an element aI ∈ ∆I . An
interpretation I is a model of an ABox A (written I |= A) iff aI ∈ CI for
all C(a) ∈ A and (aI , bI) ∈ rI for all r(a, b) ∈ A. An interpretation I is a
model of a knowledge base K = (T ,A) (written I |= K) iff it is a model of
T and A.

Example 2.2.5 (Models of a Knowledge Base)
Let the knowledge base K = (T ,A) be given by:

Deliverable 3.4.1 Page 13



LOD2 (222011) Detectable Modelling Errors and Problems

TBox T :

Man ≡ ¬Woman u Person
Woman v Person

Mother ≡ Woman u ∃hasChild.>

ABox A:

Man(STEPHEN).

¬Man(MONICA).

Woman(JESSICA).

hasChild(STEPHEN, JESSICA).

We will now look at some interpretations and determine whether or not
they are a model of K. For all interpretations, the domain {MONICA, JESSICA, STEPHEN}
is used and all object names are interpreted in the obvious way (STEPHEN is
interpreted as STEPHEN etc.).

Let the interpretation I1 be given by:

ManI1 = {JESSICA, STEPHEN}
WomanI1 = {MONICA, JESSICA}
MotherI1 = ∅
PersonI1 = {JESSICA, MONICA, STEPHEN}

hasChildI1 = {(STEPHEN, JESSICA)}

Clearly this does not satisfy T , because the definition Man ≡ ¬WomanuPerson
is not satisfied. We have ManI1 = {JESSICA, STEPHEN} and (¬Woman u
Person)I1 = {STEPHEN}, which are not equal. However, I1 satisfies A.

Let the interpretation I2 be given by:

ManI2 = {STEPHEN}
WomanI2 = {JESSICA, MONICA}
MotherI2 = ∅
PersonI2 = {JESSICA, MONICA, STEPHEN}

hasChildI2 = ∅

I2 satisfies T , but not A. We have hasChild(STEPHEN, JESSICA) ∈ A, but
(STEPHENI2 , JESSICAI2) 6∈ hasChildI2.

Deliverable 3.4.1 Page 14



LOD2 (222011) Detectable Modelling Errors and Problems

Let the interpretation I3 be given by:

ManI3 = {STEPHEN}
WomanI3 = {JESSICA, MONICA}

MotherI3 = {MONICA}
PersonI3 = {JESSICA, MONICA, STEPHEN}

hasChildI3 = {(MONICA, STEPHEN), (STEPHEN, JESSICA)}

I3 is a model of T and A, so it is a model of K. One may argue that nothing
in our knowledge base justifies the fact that we interpret MONICA as mother.
However, in DLs we usually have the open world assumption. This means
that the given knowledge is viewed as incomplete. There is nothing, which
tells us that MONICA is not a mother. In databases one usually uses the closed
world assumption, i.e. all facts, which are not explicitly stored, are assumed
to be false.

As we have described, a knowledge base can be used to represent the in-
formation we have about an application domain. Besides this explicit knowl-
edge, we can also deduce implicit knowledge from a knowledge base. It is
the aim of inference algorithms to extract such implicit knowledge. There
are some standard reasoning tasks in description logics, which we will briefly
describe.

In terminological reasoning we reason about concepts. The standard
problems are consistency, satisfiability and subsumption. Intuitively, con-
sistency checks detect whether a knowledge base contains contradictions.
Satisfiability determines whether a concept can be satisfied, i.e. it is free
of contradictions. Subsumption of two concepts detects whether one of the
concepts is more general than the other.

Definition 2.2.6 (Consistency)
A knowledge base K is consistent iff it has a model. �

Example 2.2.7 (Consistency)
The knowledge base K = {A1 ≡ A2 u¬A2, A1(a)} is not consistent, since A1

is equivalent to ⊥ and has an asserted instance a.

Definition 2.2.8 (Satisfiability)
Let C be a concept and T a TBox. C is satisfiable iff there is an interpretation
I such that CI 6= ∅. C is satisfiable with respect to T iff there is a model I
of T such that CI 6= ∅. �
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Example 2.2.9 (Satisfiability)
Man u Woman is satisfiable. However, it is not satisfiable with respect to the
TBox in Example 2.2.5.

Definition 2.2.10 (Subsumption, Equivalence)
Let C, D be concepts and T a TBox. C is subsumed by D, denoted by
C v D, iff for any model I we have CI ⊆ DI . C is subsumed by D with
respect to T , denoted by C vT D, iff for any model I of T we have CI ⊆ DI .

C is equivalent to D (with respect to T ), denoted by C ≡ D (C ≡T D),
iff C v D (C vT D) and D v C (D vT C).

C is strictly subsumed by D (with respect to T ), denoted by C @ D
(C @T D), iff C v D (C vT D) and not C ≡ D (C ≡T D). �

Example 2.2.11 (Subsumption)
Mother is not subsumed by Woman. However, Mother is subsumed by Woman

with respect to the TBox in Example 2.2.5.

Subsumption allows to build a hierarchy of atomic concepts, commonly
called the subsumption hierarchy. Analogously, for more expressive descrip-
tion logics role hierarchies can be inferred.

In assertional reasoning one reasons about objects. As one relevant task
for learning in DLs, the instance check problem is to find out whether an
object is an instance of a concept, i.e. belongs to it. A retrieval operation
finds all instances of a given concept.

Definition 2.2.12 (Instance Check)
Let A be an ABox, T a TBox, K = (T ,A) a knowledge base, C a concept,
and a ∈ NI an object. a is an instance of C with respect to A, denoted by
A |= C(a), iff in any model I of A we have aI ∈ CI . a is an instance of C
with respect to K, denoted by K |= C(a), iff in any model I of K we have
aI ∈ CI .

To denote that a is not an instance of C with respect to A (K) we write
A 6|= C(a) (K 6|= C(a)). �

We use the same notation for sets S of assertions of the form C(a), e.g.
K |= S means that every element in S follows from K.

Definition 2.2.13 (Retrieval)
Let A be an ABox, T a TBox, K = (T ,A) a knowledge base, C a concept.
The retrieval RA(C) of a concept C with respect to A is the set of all instances
of C: RA(C) = {a | a ∈ NI and A |= C(a)}. Similarly the retrieval RA(C)
of a concept C with respect to K is RK(C) = {a | a ∈ NI and K |= C(a)}. �
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Example 2.2.14 (Instance Check, Retrieval)
In Example 2.2.5 we have RK(Woman) = {JESSICA, MONICA}. JESSICA and
MONICA are instances of Woman, because in any model I of K we have JESSICAI ∈
WomanI and MONICAI ∈ WomanI.

For more detailed information about description logics, we refer the in-
terested reader to [17, 5, 14] .

2.3 OWL

After we have introduced description logics, we will now describe their rela-
tionship to OWL (Web Ontology Language). In essence OWL is based on
description logics extended by several features to make it suitable as a web
ontology language, e.g. using URIs/IRIs as identifiers, imports of other on-
tologies etc. By basing OWL-DL on description logics, it can make use of the
theory developed for DLs, in particular sophisticated reasoning algorithms.

In OWL, different naming conventions are used compared to description
logics. OWL classes correspond to concepts in description logics and prop-
erties correspond to roles.

OWL comes in three flavors: OWL Lite, OWL DL, and OWL Full. OWL
Lite corresponds to SHIF(D) and OWL DL to SHOIN (D). OWL Full
contains features not expressible in description logics, but needed to be com-
patible with RDFS, i.e. OWL Full can be seen as the union of RDFS and
OWL DL.

The latest version OWL 2 is again split in two flavors OWL 2 DL and
OWL 2 Full. OWL 2 DL corresponds to the logic SROIQ(D), whereas the
full variant is again introduced for RDFS compatibility. In addition, three
profiles were introduced: EL, QL, and RL. Each profile imposes, usually
syntactical, restrictions on OWL in order to allow more efficient reasoning.
OWL 2 EL is aimed at applications which require expressive property mod-
elling and is based on the logic EL++, which guarantees polynomial reasoning
time wrt. ontology size for all standard inference problems. QL is targeted
at applications with massive volumes of instance data. In QL, query answer-
ing can be implemented on top of conventional relational database systems
and sound and complete conjunctive query answering methods can be imple-
mented in LOGSPACE. As in the EL profile, the standard inference problems
run in polynomial time. RL is aimed at scalable applications, which however,
do not want to sacrifice too much expressive power. Reasoning algorithms
for it can be implemented in rule-based engines and run in polynomial time.
The EL and QL languages are subsets of OWL 2 DL, whereas RL provides
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OWL expression / axiom DL syntax Manchester syntax
Thing > Thing
Nothing ⊥ Nothing
intersectionOf C1 u · · · u Cn C1 and . . . and Cn

unionOf C1 t · · · t Cn C1 or . . . or Cn

complementOf ¬C not C
oneOf {x1} t · · · t {xn} {x1, . . . , xn}
allValuesFrom ∀r.C r only C
someValuesFrom ∃r.C r some C
maxCardinality ≤ n r r max n
minCardinality ≥ n r r min n
cardinality ≤ n r u ≥ n r r exact n
subClassOf C1 v C2 C1 SubClassOf: C2

equivalentClass C1 ≡ C2 C1 EquivalentTo: C2

disjointWith C1 ≡ ¬C2 C1 DisjointWith: C2

sameAs {x1} ≡ {x2} x1 SameAs: x2
differentFrom {x1} v ¬{x2} x1 DifferentFrom: x2
domain ∀r.> v C r Domain: C
range > v ∀r.C r Range: C
subPropertyOf r1 v r2 r1 SubPropertyOf: r2
equivalentProperty r1 ≡ r2 r1 EquivalentTo: r2
inverseOf r1 ≡ r−2 r1 InverseOf: r2
TransitiveProperty r+ v r r Characteristics: Transitive
FunctionalProperty > v ≤ 1 r r Characteristics: Functional

Table 2.2: OWL constructs in DL and Manchester OWL syntax (excerpt).

two variants where one is subset of OWL 2 Full and the other one is a subset
of OWL 2 DL.

In general, OWL offers more convenience constructs than the correspond-
ing description logics, but does not extend its expressivity. It should be
noted that OWL does not make the unique name assumption, so different
individuals can be mapped to the same domain element. It allows to express
equality and inequality between individuals (a = b, a 6= b) using owl:sameAs

and owl:differentFrom. Most algorithms for description logics already sup-
ported this before the OWL specification was created. Not making the unique
names assumption is crucial in the Semantic Web, where it is often the case
that many knowledge bases contain information about the same entity. In
this case, a common approach is that each knowledge base uses their own
URI and owl:sameAs is used to connect them.
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Table 2.2 shows for some examples how constructs in OWL can be mapped
to description logics. We can see that some features can be mapped directly
to description logics, e.g. union, and others are syntactic sugar, e.g. functional
properties.

OWL also has different syntactic formats, in which a knowledge base can
be stored. Since it can be converted to RDF, formats like RDF/XML or
Turtle can be used. There is also a special XML syntax called OWL/XML
and the Manchester OWL Syntax. The latter one is popular in ontology
editors. Examples are shown on the right column in Table 2.2.
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Chapter 3

Ontology errors

There are several points which can be seen as a possible reason for modelling
errors and problems:

Difficulty in understanding modelling: Due to the fact that OWL is
based on an expressive DL one of the main causes for errors, especially
semantic errors, is the difficulty that comes from modelling accurately
in an expressive and complex ontology language. OWL users and de-
velopers are not likely to have a lot of experience with description logic
based KR, and without adequate tool support for training and expla-
nation, engineering ontologies can be a hard task for such users. As
ontologies become larger and more complex, highly non-local interac-
tions in the ontology (e.g., interaction between local class restrictions
on properties and its global domain/range restrictions) make model-
ing, and analysing the effects of modeling non-trivial even for domain
experts.

Interlinking of OWL Ontologies: The idea behind Web ontology devel-
opment is different from traditional and more controlled ontology en-
gineering approaches which rely on high investment, relatively large,
heavily engineered, mostly monolithic ontologies. For OWL ontolo-
gies, which are based on the Web architecture (characterized as being
open, distributed and scalable), the emphasis is more on utilizing this
freeform nature of the Web to develop and share (preferably smaller)
ontology models in a relatively ad hoc manner, allowing ontological
data to be reused easily, either by linking models (using the numer-
ous mapping properties available in OWL) or merging them (using the
owl:imports command). However, when related domain ontologies
created by separate parties are merged using owl:imports, the com-
bination can result in modeling errors. This could be due to ontology
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authors either having different views of the world, following alternate
design paradigms, or simply, using a conflicting choice of modeling con-
structs. An example is when the two upper-level ontologies, CYC and
SUMO are merged leading to a large number of unsatisfiable concepts
due to disjointness statements present in CYC [32].

Migration to OWL: Since OWL is a relatively new standard, one can ex-
pect that existing schema/ontologies in languages pre-dating OWL such
as XML, DAML, KIF etc. will be migrated to OWL, either manually
or using automated translation scripts. A faulty migration process can
lead to an incorrect specification of concepts or individuals in the re-
sultant OWL version. For example, the OWL version of the Tambis
ontology seen earlier contains 144 unsatisfiable classes (out of 395) due
to an error in the transformation script used in the conversion process.

Ontology evolution is the timely adaptation of an ontology to changed
business requirements, to trends in ontology instances and patterns
of usage of the ontology-based application, as well as the consistent
management/propagation of these changes to dependent elements. A
modification in one part of the ontology may generate subtle incon-
sistencies in other parts of the same ontology, in the ontology-based
instances as well as in depending ontologies and applications [25]. This
variety of causes and consequences of the ontology changes makes on-
tology evolution a very complex operation that should be considered
as both, an organizational and a technical process.

Modelling errors and problems in ontologies can roughly be divided into
three levels: The first one are so called syntactic errors, which especially
include violations of conventions of the language in which the ontology is
modelled, e.g. the validity of XML. Another type of modelling problems are
semantic errors, here we in particular think of inconsistency and incoherency.
The last level summarises structural problems, where in general taxonomy
errors are subsumed by. Beyond this distinction there are two additional
more task-focused types: (a) if somebody is interested in getting inferences
on expressive knowledge bases one could also ask for problems which can
negatively affect the performance of reasoners and (b) if data should be pro-
vided as Linked Data there are also specific kinds of errors. In the following
sections we will discuss the three levels and the additional types in a more
detailed way.
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3.1 Syntactic errors

Syntactic issues loom large in OWL for a number of reasons including the
baroque exchange syntax, RDF/XML and the use of URIs/IRIs (and their
abbreviations), but most of these are straightforward to detect and rectify
using XML parsers and RDF validators. However, for OWL DL, there is yet
another layer of syntactic structure on top of the corresponding RDF graph,
i.e., a number of restrictions are imposed on the form of the graph in order
for it to count as an instance of the OWL DL “species”. These restrictions
are quite onerous for authors and easy to violate as, in general, importing is
not species safe: importing an OWL Lite document into another may result
in an OWL Full document, and an OWL DL document importing either an
OWL Lite or OWL DL document may become OWL Full. Even OWL Full,
the superset of the rest, may become OWL DL or Lite upon an import. The
WebOnt working group defined a category of OWL processor for so-called
species validation, and though there were serious fears of the complexity and
implementation of such validation, several implementations have emerged
and appear to be reliable.

Invalid RDF/XML documents; usually caused by simple errors such as
unescaped special characters, misuse of RDF/XML shortcuts, and omission
of namespace. Again, such issues are relatively rare, presumably due to use
of mature RDF/XML APIs for producing data and the popularity of the
W3C RDF/XML validation service 1

Unfortunatelly, incorrect use of datatypes is relatively common in the Web
of Data. Firstly, datatype literals can be malformed: i.e., ill-typed literals
which do not abide by the lexical syntax for their respective datatype. [15]

3.1.1 Parsing and Syntax2

RDF/XML and RDFa: Ambiguous Base-URI

Just like in HTML, in certain RDF syntaxes use of relative URIs is allowed.
This allows use of abbreviated names in the document which will be ap-
pended onto the base URI: usually determined as the URL from which the
document is retrieved. Although XML (and thus RDF/XML and RDFa) al-
lows specification of an unambiguous base URI, oftentimes, such a base URI
is unspecified.

1http://www.w3.org/RDF/Validator/
2This section contains material edited and adapted from from the work done in the

Pedantic Web Group - http://pedantic-web.org/fops.html with the permissions of
the authors. Please also refer to [15] when mentioning this content.
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If we consider that a document can be retrieved from two different loca-
tions; e.g., http://example.org/doc.rdf and http://www.example.org/doc.rdf.
This document uses relative URIs but doesn’t explicitly specify a base URI.
Now, an agent which accesses the document from both locations will resolve
the relative URIs against different base URIs, with different resulting URIs.
The agent will see the same resource—when identified by a relative URI—as
two different resources with distinct URIs (one version with, and one version
without the www.).

Thus, unless one is sure that his base URI is unambiguous or he does not
use relative URIs, we encourage use of the xml:base construct to explicitly
specify the base URI, and ultimately avoid confusion.

One other word of warning about base URIs: depending on the combina-
tion of the base URI and the relative URI being resolved against it, a parser
may unexpectedly strip part of the base URI to create what it deems to be
the intended full URI. For example:

• “http://example.org/dangling/” + “name” = “http://example.org/dangling/name”

• “http://example.org/dangling” + “name” = “http://example.org/name”

• “http://example.org/dangling” + “” = “http://example.org/dangling”

• “http://example.org/dangling” + “/name” = “http://example.org/name”

• “http://example.org/dangling/” + “/name” = “http://example.org/name”

• “http://example.org/dangling#” + “name” = “http://example.org/name”

• “http://example.org/dangling” + “#name” = “http://example.org/dangling#name”

• “http://example.org/dangling#” + “#name” = “http://example.org/dangling#name”

• “http://example.org/dangling#” + “/name” = “http://example.org/name”

The moral of the story here is to be careful if using relative URIs and
always:

• ensure that base URI is unambiguous

• and double-check that the URIs resolve as expected.

• if using RDF/XML, be wary of the fact that rdf:ID relative names have
a different means of being resolved against base URIs. . .
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RDF/XML: rdf:ID/rdf:nodeID/rdf:about/rdf:resource

In RDF/XML, there are four constructs for identifying things: rdf:ID, rdf:nodeID,
rdf:about and rdf:resource. Jumbling them up is surprisingly easy and can
result in a document which although valid, represents something completely
different from what one intended. We now briefly clarify the intended use of
the four constructs, and then discuss some common mistakes and confusion:

• rdf:about : Used solely as an attribute on a ”node element” to uniquely
identify a resource by means of a URI. The URI can be specified in full,
or as a relative URI which will be resolved against the in-scope base-
URI.

• rdf:resource : Used solely as an attribute on a ”property element” to
specify a URI value for an object. Similarly to rdf:about, the URI may
be given in full, or as a relative URI which will be resolved against the
in-scope base URI.

• rdf:ID : Used as an attribute to provide unique relative XML names
which will be appended onto the base URI. When used on a node
element, rdf:ID=”xmlname” acts roughly like rdf:about=”#xmlname”;
however, rdf:ID values must be unique names and must be valid XML
names. Can also be used on a ”property element” to identify a reified
statement (valid, but rare usage).

• rdf:nodeID : When used on a ”subject element”, acts similarly to
rdf:ID and provides unique names which are used to create blank-nodes
instead of URIs. When used in the ”property position”, and allows for
specifying blank-node objects.

Problems mainly arise when rdf:ID is mistakenly used instead of rdf:about,
rdf:nodeID or rdf:resource; or indeed, vice-versa. Firstly, on node elements,
and unlike rdf:about, rdf:ID values have a ’#’ prepended. Secondly, when
used on node elements, rdf:ID creates URIs and rdf:nodeID creates blank
nodes. Thirdly, when used on property elements, rdf:ID (unlike rdf:nodeID)
identifies a reified statement, and not the object of the property—to identify
an object URI, rdf:resource should be used.

Again, even though a validator may give one document the thumbs up,
this is only an indication that the document can be parsed into triples, not
necessarily that the document parses into the triples that one intended and
with the names that one intended. One should also verify that the parsed
triples are as expected, and that any relative URIs resolve as expected.
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Incompatibility with Range Datatype

Properties can have a defined range which states that a value of a specyfic
property (object of a triple with that property in the predicate position) must
be of a certain class. Not only can a range be a class of individuals (e.g., the
knows property has range Person), but it can also be a datatype class (e.g.,
the lastModified property has range dateTime).

To understand how problems arise, we need to look a bit deeper into the
interpretation of datatypes and datatype literals. Firstly, it is important to
note that the class of plain literals without language tags (literals without a
datatype or language tag) can be considered equivalent to the datatype class
xsd:string. Secondly, a literal cannot have both a datatype and a language tag
(if you try to give a literal both a language tag and a datatype in RDF/XML,
the language tag will most often be ignored). Thirdly, there are two types of
XML Schema datatypes: primitive datatypes and derived datatypes where
the latter are defined in terms of (derived from) a parent datatype; all derived
datatypes have exactly one primitive datatype ancestor and a member of a
derived datatype is also considered a member of all ancestor datatypes—to
give an example 3 , nonPositiveInteger is a datatype derived from integer,
which is in turn derived from decimal; a member of nonPositiveInteger is also
a member of integer and decimal. Finally, all of the primitive XML Schema
datatypes are disjoint from each other; this means that a literal cannot be
a member of more than one primitive datatype (or, as it follows, of derived
datatypes with different primitive datatype ancestors).

What is more, remember that properties can have datatypes defined as
range. Now, everytime one use that property, one must ensure that he gives a
value whose datatype is compatible (not disjoint) with the defined range. One
common misconception is that if the range of a property; e.g., lastModified;
is a certain datatype; e.g., xsd:dateTime; and a plain literal value is given
for that property; e.g.,

"2002-10-10T12:00:00Z" ; then that plain literal will be converted into
a typed literal; e.g., "2002-10-10T12:00:00Z"^^<xsd:datetime> This is
not so, and is in fact an inconsistency since the plain literal value is consid-
ered analogously to an xsd:string which is disjoint with the property’s range
xsd:dateTime.

The safest option to avoid such confusion is fairly straightforward: if the
range of a property that one is using is a datatype, specifically type each value
for that property using that exact datatype, and ensure that the value abides
by the lexical form of that datatype; e.g., every time one use lastModified,
one should specify that the value is an xsd:dateTime, and ensure that the

3http://www.w3.org/TR/xmlschema-2/#built-in-datatypes
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value is a lexically valid xsd:dateTime.

3.2 Semantic errors

Given a syntactically correct OWL ontology, semantic resp. logical defects
are those which can be detected by an OWL reasoner. These include unsat-
isfiable classes and inconsistent ontologies.

Unsatisfiable classes are those which cannot be true of any possible in-
dividual, that is, they are equivalent to the empty set (or, in description
logic terms, to the bottom concept, or, in OWL lingo, to owl:Nothing). For
example, class A is unsatisfiable if it is a subclass of both, class C and ¬C,
since it implies a direct contradiction. If the ontology contains at least one
unsatisfiable class, sometimes people speak of an incoherent ontology. Un-
satisfiable concepts are usually a fundamental design error, as they cannot
be used to characterize any individual. Unsatisfiable concepts are also quite
easy to detect for a reasoner and for a tool to display. However, determining
why a concept in an ontology is unsatisfiable can be a considerable challenge
even for experts in the formalism and in the domain, even for modestly sized
ontologies. The problem worsens significantly as the number and complexity
of axioms of the ontology grows.

Inconsistent ontologies are those which have a contradiction in the in-
stance data, e.g., an instance of an unsatisfiable class. They are also fairly
easy for a reasoner to detect, if it can process the ontology at all. In fact, in
tableau reasoners, unsatisfiability testing is reduced to a consistency test by
positing that there is a member of the to be tested class and doing a con-
sistency check on the resultant knowledge base (KB). However, unlike with
mere unsatisfiable classes, an inconsistent ontology is, on the face of it, very
difficult for a reasoner to do further work with. Since anything at all follows
from a contradiction, no other results from the reasoner (e.g., with regard to
the subsumption hierarchy) are useful.

Not always but sometimes incoherency and inconsistency are related in
some way, as we can see in Fig. 3.2. The ontology in (a) is incoherent
because there exists an unsatisfiable class C, which is subclass of the two
disjoint classes A and B, but is consistent because the only two existing
instances a and b are not asserted to C. If we consider the knowledge base
in example (b) we can see that it is incoherent because of the same reason as
in (a), but this time is also inconsistent as a is asserted to the unsatisfiable
concept C. Examples (c) and (d) are also inconsistent, but this time the error
is not rooted by an unsatisfiable class, but because instance a is asserted to
A and ¬A (example (c)) resp. the disjoint classes A and B (example (d)).
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Figure 3.1: The differences/relationships between incoherency and inconsis-
tency.

In both cases the ontology itself is coherent. In the case of (e), we haven
an inconsistent and incoherent knowledge base, because the class existing
exactly of the instance a is subclass of the disjoint classes A and B.

Common error patterns Although there are theoretically indefinitely
many ways in which inconsistencies may arise, in [37] they have found em-
pirically that most can be boiled down to a small number of ”error patterns”:

1. The inconsistence is from some local definition:

(a) Having both a class and its complement class as super conditions.

Example 3.2.1

MeatyV egetable v V egetable

MeatyV egetable v ¬V egetable

(b) Having both universal and existential restrictions that act along
the same property, whilst the filler classes are disjoint.
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Example 3.2.2

V egetarianPizza v ∀hasTopping.V egetable
V egetarianPizza v ∃hasTopping.Meat

V egetable uMeat v ⊥

(c) Having a super condition that is asserted to be disjoint with
owl:Thing.

Example 3.2.3

Pizza v ¬>

(d) Having a super condition that is an existential restriction that has
a filler which is disjoint with the range of the restricted property.

Example 3.2.4

IceCreamPizza v ∃hasToppping.IceCream
Range (hasTopping) = PizzaTopping

IceCream u PizzaTopping v ⊥

(e) Having an universal restriction with owl:Nothing as the filler and
a must existing restriction along property relationships.

Example 3.2.5

Bread v ∀hasToppping.⊥
Bread v ∃hasToppping.Meat

(f) Having super conditions of n existential restrictions that act along
a given property with disjoint fillers, whilst there is a super con-
dition that imposes a maximum cardinality restriction or equality
cardinality restriction along the property whose cardinality is less
than n.
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Example 3.2.6

BoringP izza v≤ 1hasTopping.>
BoringP izza v ∃hasTopping.Meat

BoringP izza v ∃hasTopping.V egetable
Meat u V egetable v ⊥

(g) Having super conditions containing conflicting cardinality restric-
tions.

Example 3.2.7

BoringFancyP izza v< 2hasTopping.>
BoringFancyP izza v> 2hasTopping.>

2. The inconsistence is propagated from other source:

(a) Having a super condition that is an existential restriction that has
an inconsistent filler.

Example 3.2.8
(Assumption: MeatyV egetable is inconsistent)

MeatyV egetableP izza v ∃hasTopping.MeatyV egetable

(b) Having a super condition that is a hasValue restriction that has
an individual that is asserted to be a member of an inconsistent
class.

Example 3.2.9
(Assumption: MeatyV egetable is inconsistent)

MeatyV egetableP izza v ∃hasTopping.aMeatyV egetable

aMeatyV egetable ∈MeatyV egetable

Explaining logical errors Finding and understanding these undesired
entailments can be a difficult or impossible task without tool support. Even
in ontologies with a small number of logical axioms, there can be several,
non-trivial causes.
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Therefore, interest in finding explanations for such entailments has in-
creased in recent years. One of the most usual kinds of explanations are
justifications [21]. A justification for an entailment is a minimal subset of
axioms with respect to a given ontology, that is sufficient for the entailment
to hold. More formally, let O be a given ontology with O |= η, then J is a
justification for η if J |= η, and for all J ′ ⊂ J , J ′ 6|= η. In the meantime,
there is support for the detection of potentially overlapping justifications in
tools like Protégé4 and Swoop5. Justifications allow the user to focus on
a small subset of the ontology for fixing a problem. However, even such a
subset can be complex, which has spurred interest in computing fine-grained
justifications [16] (in contrast to regular justifications). In particular, laconic
justifications are those where the axioms do not contain superfluous parts
and are as weak as possible. A subset of laconic justifications are precise
justifications, which split larger axioms into several smaller axioms allowing
minimally invasive repair.

A possible approach to increase the efficiency of computing justifications
is module extraction [11]. Let O be an ontology and O′ ⊆ O a subset of
axioms of O. O′ is a module for an axiom α with respect to O if: O′ |= α iff
O |= α. O′ is a module for a signature S if for every axiom α with Sig(α) ⊆ S,
we have that O′ is a module for α with respect to O. Intuitively, a module is
an ontology fragment, which contains all relevant information in the ontology
with respect to a given signature. One possibility to extract such a module is
syntactic locality [11]. [35] showed that such locality-based modules contain
all justifications with respect to an entailment and can provide order-of-
magnitude performance improvements.

For a single entailment, e.g. an unsatisfiable class, there can be many
justifications. Moreover, in real ontologies, there can be several unsatisfiable
classes or several reasons for inconsistency. While the approaches described
above work well for small ontologies, they are not feasible if a high number of
justifications or large justifications have to be computed. Due to the relations
between entities in an ontology, several problems can be intertwined and are
difficult to separate.

One approach [24] for handling the first problem mentioned above is to
separate between root and derived unsatisfiable classes. A derived unsatisfi-
able class has a justification, which is a proper super set of a justification of
another unsatisfiable class. Intuitively, their unsatisfiability may depend on
other unsatisfiable classes in the ontology, so it can be beneficial to fix those
root problems first. There are two different approaches for determining such

4http://protege.stanford.edu
5http://www.mindswap.org/2004/SWOOP/
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classes: The first approach is to compute all justifications for each unsatis-
fiable class and then apply the definition. The second approach relies on a
structural analysis of axioms and heuristics. While the first approach is com-
putationally very expensive for larger ontologies, the second one suffers from
incompleteness as it is sound, but incomplete, i.e. not all class dependencies
are found, but the found ones are correct. To increase the proportion of
found dependencies, the TBox can be modified in a way which preserves the
subsumption hierarchy to a large extent. It was shown in [24] that this allows
to draw further entailments and improves the pure syntactical analysis.

Given a justification, the problem needs to be resolved by the user, which
involves the deletion or modification of axioms in it. For supporting the user
by handling many justification with possible many axioms, ranking meth-
ods, which highlight the most probable causes for problems, are important.
Common methods (see [22] for details) are frequency (How often does the
axiom appear in justifications?), syntactic relevance (How deeply rooted is
an axiom in the ontology?) and semantic relevance (How many entailments
are lost or added?6).

3.3 Structural errors

These are defects that are not necessarily invalid, syntactically or semanti-
cally, yet are discrepancies in the KB or unanticipated results of modeling,
which require the modelers’ attention before use in a specific domain or ap-
plication scenario. Consider the following cases:

• There may be unintended inferences (subsumption, realization relation-
ships, etc.) discovered by the reasoner. For example, it can be inferred
that “parents of at least three children” is a subclass of “parents with
at least two children”, even if there is no explicit assertion of that re-
lationship. Though the reasoner can detect and report subsumptions
such as this, it cannot distinguish between desirable (non)inferences
and undesired ones.

• Missing type declarations can occur in a KB, such as if a resource
is used in a particular manner that entails it to be of a particular
type, but is not explicitly declared to be so, e.g., given the axiom
hasParent (John, Mary) where hasParent is known to be an owl:ObjectProperty,
one can infer that John and Mary both have to be of type owl:Individual.

6Since the number of entailed axioms can be infinite, it is recommended to restrict the
search for that entailments to a subset of axioms as suggested in [22].
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In such cases, the reasoner will infer the corresponding entailment, but
the absence of this explicit information could be considered as a defect.

• In some cases, redundancies may exist in the KB, such as when an
asserted axiom is entailed by another set of axioms from the KB. Here,
depending on whether the redundancy is desired or not, the case could
be considered as a defect.

• There may be cases of unused atomic classes or properties with no
references anywhere in the KB (i.e., the term is not explicitly used in
any axiom in the KB), which can be considered as extraneous data.

To make it clearer which problems and errors are considered in this chap-
ter, we will describe a classification which was suggested in [33]. Therein the
focus is aimed on the evaluation of taxonomic knowledge, regarding other
perspectives likes completeness or redundancy.

This approach is based on 3 criteria which can be considered while eval-
uating an ontology:

Consistency is declared as there exists no possibility to get contradictory
conclusions from a given set of valid definitions.

Completeness means that all which is supposed to be in the ontology is
explicitly stated in it, or can be inferred.

Conciseness refers to whether in the ontology exist (a) no unnecessary or
useless informations, (b) no redundancy between explicit definitions
and (c) no inferred redundancies.

Taken into account these criteria, the taxonomy errors are divided into
the three areas Inconsistency, Incompleteness and Redundancy, which are
then further subdivided as we will describe in Sec. 3.2.

Inconsistency

There are mainly three types of errors that cause inconsistency and ambiguity
in the ontology. These are Circulatory errors, Partition errors and Semantic
inconsistency errors.

Circularity errors

They occur when a class is defined as a subclass or superclass of itself at
any level of hierarchy in the ontology. They can occur with distance 0, 1
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Taxonomy errors =

Inconsistency



Circularity

Partition errors



Subclass partition with common instances

Subclass partition with common classes

Exhaustive subclass partition with common instances

Exhaustive subclass partition with common classes

Exhaustive subclass partition with external instances

Semantic errors

Incompleteness


Incomplete concept classification

Omission of disjoint knowledge

Functional Property Omission

Inverse-Functional Property Omission

Redundancy



Grammatical


Redundancy of subClassOf relations

Redundancy of subPropertyOf relations

Redundancy of instanceOf relations

Redundancy of disjointWith relations

Identical formal definition of classes

Identical formal definition of properties

Identical formal definition of instances

Figure 3.2: Classification of the taxonomy errors
Source: Handbook on ontologies[33] extended with [9]

or n, depending upon the number of relations involved when traversing the
concept down the hierarchy of concepts until we get the same from where
we started traversal. For example, circulatory error of distance 0 occurs
when an ontologist models OddNumber concept as subclass of NaturalNumber
and NaturalNumber as subclass of OddNumber. As OWL ontologies provide
constructs to form property hierarchies, circulatory errors can also occur
there in.

Partition errors

There are mainly several ways of classification depending upon the type
of decomposition of superclass into subclasses. When all the features of
subclasses are independently described and subclasses do not overlap with
each other then it leads to disjoint decomposition. When ontologists follow
the completeness constraint between the subclasses and the superclass, then
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it leads to a complete or exhaustive decomposition. The other can depend on
both the disjoint and exhaustive decomposition. Three types of errors are:

Semantic errors

This type of errors occurs if the developer makes incorrect statements during
the classification, i.e. a class is declared as subclass of another class, to which
it doesn’t really belong. For instance if someone wants to create an ontology
about plants and thereby makes a statement that class Car is subclass of the
class Rose, which of course this doesn’t reflect the real world.

Incompleteness

Sometimes ontologists made the classification of concepts but overlook some
of the important information about them. Such incompleteness often creates
ambiguity and lacks reasoning mechanisms. The following subsections give
an overview of incompleteness errors.

Incomplete concept classification

Generally, an error of this type is made whenever concepts are classified with-
out accounting for them all, that is, concepts existing in the domain are over-
looked. An error of this type occurs if a concept classification Transportation

is defined considering only the classes formed by Cars and Planes and over-
looking, for example, the Ships.

Omission of disjoint knowledge

This error occurs when ontologists classify the concept into many subclasses
and partitions, but omits disjoint knowledge axiom between them. For ex-
ample an ontologist models the BeachLocation, HistoricLocation and
MountainLocation as subclasses of Location concept, but omits to model
the disjoint knowledge axiom between subclasses. Due to significant im-
portance of disjoint axiom between classes, OWL allows to specify disjoint
axioms between properties as well. So we also emphasis that ontologists
should check and specify disjoint knowledge between properties, and avoid
creating common instances between them.

Subclass partition omission

This type of error occurs if the developer defines a partition of a class, but
omits to add an completeness constraint to the set of classes in the partition.
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Exhaustive subclass partition omission

This error occurs when ontologists do not follow the completeness constraint
while decomposition of concept into subclasses and partitions. For example
ontologist models the BeachLocation, HistoricLocation and MountainLocation

as disjoint subclasses of Location concept, but does not specify that whether
or not this classification forms an exhaustive decomposition.

Functional Property Omission (FPO) for single valued property

According to Ontology Definition Metamodel, when there is only one value
for a given subject then that property needs to be declared as functional.
The tag Functional can be associated with both the object properties and
datatype properties. For example hasBlood Group as an object property
between Person and Blood Group is an example of functional object prop-
erty. Every subject Person belongs to only one type of BloodGroup, so
hasBlood Group property should be tagged as functional so that person
should be associated with one blood group. Likewise functional datatype
properties allow only one range R for each domain instance D. Ignoring
the functional tag allows a property to have more than one value leading to
inconsistency. One of the main reasons for such inconsistency is that the on-
tologist has ignored that an OWL ontology by default supports multi-values
for datatype property and object property.

Inverse-Functional Property Omission (IFPO) for a unique valued
property

According to Ontology Definition Metamodel, inverse-functional property of
the object determines the subject uniquely, i.e. it acts like a unique key in
databases. This means that if we state P as an owl:InverseFunctionalProperty,
then this restricts that for a single instance there can only be a value x,
i.e. there cannot exist two different instances y and z such that both pairs
(y, x) and (z, x) are valid instances of P . In OWL Full, a datatype property
can be tagged as inverse-functional property because datatype property is
a subclass of object property. But in OWL DL a datatype property can
not be tagged as inverse-functional property because object properties and
datatype properties are disjoint. An example of an inverse object prop-
erty is National SecurityNo that belongs to the Person as it uniquely
identifies the Person. Ignoring inverse-functional tag with the property
National SecurityNo creates inconsistency within the ontology due to in-
complete specification of concept. We consider such lack of information as
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an error, because such ignorance leads machine not to infer and reason about
concepts uniquely.

Redundancy

Redundancy is a type of error that occurs when we redefine expressions of
the ontology that were already defined explicitly or that can be inferred from
other definitions.

Redundancy of subClassOf, subPropertyOf and instanceOf rela-
tions

Redundancies of subClassOf error occur when ontologists specify classes that
have more than one subClassOf relation directly or indirectly. Directly means
that a subClassOf relation exist between the same source and target classes.
Indirectly means that a subClassOf relations exist between a class and its in-
direct superclass of any level. For example ontologists specify BeachLocation

as a subclass of Location and Place, and furthermore Location is defined
as a subclass Of Place. Here indirect subClassOf relation exists between
BeachLocation and Place creating redundancy. Likewise redundancy of
subPropertyOf can exist while building property hierarchies. Redundan-
cies of instanceOf relation occur when ontologists specify instance Swat as
an instanceOf Location and Place classes, and it is already defined that
Location is a subclass of Place. The explicit instanceOf relation between
SWAT and Place creates redundancy as SWAT is indirect instance of Place

and Place is a superclass of Location.

Redundancy of disjointWith relations (RDR)

Redundancy of disjointWith relation occurs when the concept is explicitly
defined as disjoint with other concepts more than once. By Description Logic
rules, if a concept is disjoint with any concept then it is also disjoint with
its sub concepts. The one possible way of occurrence of RDR is that the
concept is explicitly defined as disjoint with parent concept and also with
its child concept. For an example, concept Male is defined as disjoint with
Female and also with sub concepts of Female. This type of redundancy can
occur due to direct disjointness (directly disjoint) and indirect disjointness
(concept is disjoint with other because its parent is disjoint with it).
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Identical formal definition of classes, properties and instances

Identical formal definition of classes, properties or instances may occur when
the ontologist defines different (or same) names of two classes, properties or
instances respectively, but provides the same formal definition.

3.4 Reasoning performance problems

OWL reasoners performance isn’t bad, it’s unpredictable. And that’s a prob-
lem.

Non-experts often find predicting reasoner performance from their ontol-
ogy disappointing. The connections between performance and the data are
opaque in a way that is sometimes confounding and off-putting. In general
all automated reasoners for expressive knowledge representation formalisms
have this problem, some more so than other.

Contrast RDBMS technology. Not only is the underlying computational
complexity much better, but many developers have internalized the technol-
ogy such that predictions are more reliable and the connection between data,
queries, and performance is more transparent. And the bad stuff is always
bad, till one fix it, and the good stuff is always good till one break it. And
if all else fails one can just EXPLAIN to get the way to happiness.

For serious OWL reasoner users, the analogue of EXPLAIN is either an
email to the users list or a support contract, respectively. Another solution is
to sniff out problems in ontologies and, ideally, automatically repair them. To
achieve this efficiently the developers of the Pellet have build a tool, called
Pellint, which analyses an ontology to find possible performance problems
based on common error patterns.

At next we provide a very high-level description of the tableau algorithm
for DLs and explain the main sources of its reasoning complexities. We refer
the reader to [4] for a more detailed and accurate description of the tableau
algorithms. After that we will describe which kinds of patterns are suggested
to be a possible problem for existing tableau-based reasoners.

Tableau-based reasoning complexity

All the reasoning services in tableau algorithms can be reduced to consistency
checking, which is done by building a completion graph. The nodes in the
completion graph intuitively stand for individuals and literals. Each node is
associated with its corresponding types. Property-value assertions are repre-
sented as directed edges between nodes. If we are checking the consistency
of an ontology the initial completion graph is built from the asserted facts in
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the ontology. If we are checking the satisfiability of a class the initial graph
contains a single node whose type is that concept. The reasoner repeatedly
applies the tableau expansion rules until a clash (i.e. a contradiction) is de-
tected in the label of a node, or until a clash-free graph is found to which
no more rules are applicable. In the process of tableau completion, there are
two main sources of complexities: (1) non-determinism in ”completing” the
graph; and (2) the size of the graph built.

Non-determinism

Building the completion graph is non-deterministic due to disjunctions which
are expressed with the UnionOf construct in OWL. The instances of the
union class must be an instance of at least one of the union elements. The
reasoner will do a case-by-case analysis to figure out if that is possible. A
non-deterministic choice made because of a union class will have an impact on
the completion graph, e.g. new edges may be added because of that choice.
In the event that we made a wrong choice (which will be indicated by an
inconsistency in the later stages of completion process) we have to backtrack
and undo all the changes made to the graph. This effect multiplies if we have
many choices to make. There are many optimization algorithms implemented
in tableau-based reasoners to reduce the effects of non-determinism, but it is
not hard to see how very large number of union classes will adversely affect
reasoning time.

Completion graph size

The size of the completion graph depends on the size of the initial graph (i.e.,
the asserted instances), but also on the use of existential restrictions. Con-
structs like SomeValuesFrom, MinCardinality, and ExactCardinality will
cause the tableau algorithm to create new nodes in the completion graph. Ap-
plying the tableau completion rules to new nodes will require more processing
time and possibly increase the non-determinism involved because there might
be new non-deterministic choices made for these new nodes. Predicting the
exact size of the completion graph (without actually building the graph) is
not possible, but in Pellint some heuristics and graph analysis techniques are
used to compute an approximation of this size.

Patterns

There are two groups of patterns: axiom-based and ontology-based. Axiom-
based patterns detect lints at the axiom level, typically at a single equivalent
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classes axiom or a single subclass axiom; whereas ontology-based patterns
detect lints that are established by two or more axioms in the whole ontology.

We will describe the patterns next, where the information for each pattern
starts with its name and description. It is followed by example(s) of axioms
demonstrating the pattern, and an explanation of why it may be problematic
for reasoning.

Axiom-based Patterns

General Concept Inclusions (GCIs) A subclass axiom with a complex
concept expression on the left hand side, or an equivalent axiom with
two or more complex concepts.

Example 3.4.1

A uB v C

or
C uD ≡ ∃P.E

Reasoning complexity:

A tableau-based reasoner deals with GCI axioms by converting them
into a standard form. For example, C v D is converted into the ax-
iom > v ¬C t D where C and D can be arbitrary concepts. Since
every individual is an instance of Thing, the reasoner then applies the
converted axiom to every individual. We observe that every conversion
produces a non-deterministic choice due to the OR construct, which
is then applied to every individual. Hence GCI axioms are extremely
expensive.

Equivalent to AllValue Restriction A named concept is equivalent to
an AllValues restriction.

Example 3.4.2

A ≡ ∀R.C

Reasoning complexity:

An AllValues restriction does not require to have a property value but
only restricts the values for existing property values. This means any
concept not having the property value, e.g. a concept that is disjoint
with the domain of the property, will satisfy the AllValues restriction
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and turn out to be a subclass of the concept defined to be equivalent
to the restriction. This typically leads to unintended inferences and
additional inferences may eventually slow down reasoning performance.

Equivalent to Some Complement A named concept is equivalent to some
complement.

Example 3.4.3

A ≡ ¬ (C u ∃R.D)

Reasoning complexity:

An axiom of this pattern implies that two concepts are disjoint unions
of Thing (i.e. > v A t (C u ∃R.D) in the example) which adds to the
general concept inclusion (GCI) axioms. This pattern typically indi-
cates a modelling error since it forces every individual to be classified
under one of the two possible definitions.

Equivalent to Top Top is equivalent to some concept or is part of an equiv-
alent classes axiom.

Example 3.4.4

A ≡ >

or

EquivalentClasses (A,>,∃R.C)

Reasoning complexity:

This pattern directly adds to the GCI axioms since it affects the defi-
nition of owl:Thing.

Large Cardinality Cardinality restriction is too large.

Example 3.4.5

A v≤ 11R.>

or

A v≥ 11R.>

or

A v= 11R.>
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Reasoning complexity:

Min and exactly restrictions generate individuals during reasoning,
which grows exponentially when these axioms interact with the others
in a recursive manner. Setting the number too large on these restric-
tions may lead to intractable memory consumption during reasoning.
On the other hand, a max restriction introduces non-determinism in
choosing which individuals to merge during reasoning, which leads to
intractable time complexity.

Large Disjunction Too many disjuncts in a disjunction.

Example 3.4.6

A v C u (D1 tD2 tD3 tD4 tD5 tD6 tD7 tD8)

Reasoning complexity:

Disjunction is a source of non-determinism during reasoning, which
leads to intractable time complexity.

Ontology-based Patterns

Concept with Equivalent and Subclass Axioms A named concept ap-
pears in an equivalent axiom and on the left-hand side of a subclass
axiom.

Example 3.4.7

A ≡ C1 u C2

A v ∀R.D

or

A v ∀R.D
EquivalentClasses (A,B,C1, C2)

Reasoning complexity:

These implicitly define GCI axioms. For instance, (C1 u C2) v A is
implicitly implied by both examples above.
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Existential Explosion An existential restriction (some, as well as min and
exactly) generates individuals in a tableau-based reasoner. Many exis-
tential restrictions interact in a complex manner and may generate an
intractable number of individuals in such reasoners.

Example 3.4.8

C v ∃R.D
D v ∃R.E
E v≥ 10P.>
E v ∀P.F
F v ∃R.G

...

Reasoning complexity:

A large number of individuals need to be maintained and kept in mem-
ory, which slows down reasoning significantly.

Too Many DifferentIndividuals Axioms Too many individuals involved
in DifferentIndividuals axioms.

Example 3.4.9

DifferentIndividuals (Ind1, Ind2, Ind3, Ind4, Ind5, Ind6, Ind7, Ind8, Ind9)

Reasoning complexity:

Some reasoners keep track of DifferentIndividuals for each individual
separately. This means the memory consumption required to represent
a DifferentIndividuals axiom is quadratically proportional to the num-
ber of individuals involved in the axiom; for owl:differentFrom there
are only 2 individuals involved whereas for owl:AllDifferent there
are arbitrary number of individuals involved. Using too many Differ-
entIndividual axioms increases the memory consumption significantly
and affect reasoning performance.
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3.5 Problems in Linked Data7

The common problems can be divided into five categories:

• the accessibility of a particular document,

• naming and dereferencability,

• interpretation of datatype literals,

• reasoning

• absence of good quality links

Accessibility

Document Not Retrievable

Simple: a document is not externally accessible on the Web. . . Not to dwell
too much on the issue—and besides obvious causes such as the document
being nonexistent—a publisher should ensure that the document is not an
internal or local resource, that authentication is not required, and that the
robots.txt settings do not conflict with (at least) low-volume external access.

Incorrect Content-Type

Related to the above issue of content negotiation, a server returns the media
type of the returned content by means of the Content-Type field in the HTTP
response header (cf. Section 14.17 of the HTTP specification) 8 . Again, the
responding server should return the most specific media type which applies to
the returned document format. The correct media types for various formats
likely to be used around the Web of Data are:

A frequent problem that should be avoided is the use of the generic XML
media types text/xml or application/xml for specific XML formats that have
their own media type, such as XHTML, RDF/XML, or SPARQL results.

7This section contains material edited and adapted from the work done in the Pedantic
Web Group - http://pedantic-web.org/fops.html with the permissions of the authors.
Please also refer to [15] when mentioning this content.

8http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17
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Format Media type
RDF/XML application/rdf+xml

Turtle text/turtle

N-Triples text/plain

N-Quads text/x-nquads

HTML text/html

XHTML text/html or application/xhtml+xml

XHTML with RDFa application/xhtml+xml

General JSON application/json

SPARQL Query Result XML format application/sparql-results+xml

SPARQL Query Result JSON format application/sparql-results+json

Incorrect Content Negotiation

In practice, content negotiation is successfully used in the following scenarios:

• Redirecting users to country- or language-specific sub-sites based on
their IP address.

• Delivering browser-specific versions of a site to work around browser
incompatibilities, based on the browser’s User-Agent header. (This is
considered poor practice by Web standards advocates, but is common
nonetheless.)

• Different translations of the same document are displayed based on
the Accept-Language header. Browsers send different Accept-Language
headers based on the settings chosen by the user in the browser or
system preferences.

• Some REST-style Web APIs allow clients to choose between different
data formats, such as XML and JSON, based on the client’s Accept
HTTP header. (The usefulness of this can be questioned, because
clients are custom-built for those APIs, and that would be an easier task
if the API would simply use different URIs for the different variants.)

• The Linked Data style of publishing RDF uses content negotiation
to provide convenient human-readable versions of the published RDF
data. Based on the Accept header, either RDF or HTML is delivered.
Linked data browsers and other RDF clients have to send an appropri-
ate Accept header to get the RDF.
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Content Negotiation between Inappropriate Variants

Imagine a Web site that uses RDF to express incomplete metadata about
its HTML pages. For each HTML page, say, /foo.html, there might be a
corresponding RDF page at /foo.rdf that contains basic metadata (informa-
tion about title, creator, creation date, and the like). But the RDF does not
contain the actual main content of the HTML page. In this case, the RDF
is not an appropriate alternate version of the HTML, because it does not
contain the same information. Content negotiation between both variants
from /foo would be inappropriate.

Another example—and one that does not involve RDF—is as follows:
Imagine an important document, which is available in English, and in a
Spanish translation. But the Spanish translation is not complete: the second
half of the document is simply missing from the Spanish version. Again,
content negotiation between both variants is inappropriate.

In general, content negotiation between different versions of the same
content is only appropriate if all the variants contain the same information.
Variances in format (e.g., JSON vs. XML), language, and quality (to some
extent—e.g., pristine English words and a sloppy German translation), are
acceptable. But if some variants give you more information then others, then
content negotiation is harmful.

Incorrect interpretation of the Accept Header

Content negotiation is often presented in a simplified way: “If the client sends
X in the Accept HTTP header, then the server returns format X. If the client
sends Y, then the server returns Y.” But this is not the whole story and if
one think that it is, then he is very likely to implement content negotiation
incorrectly.

Accept headers have a fairly complex syntax. In particular:

• Accept headers can include multiple media types, separated by comma.
The following header would indicate that the client prefers either RD-
F/XML or Turtle: application/rdf+xml,text/turtle.

• Media types, such as text/html, can include additional parameters ap-
pended after a semicolon: text/html;charset=utf-8. It is often sufficient
to just ignore the parameters.

• One parameter is of particular importance though: the quality param-
eter—also known as the q value. Clients use q values to indicate pref-
erence of some media types over others. In the following example, the
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client indicates that it prefers RDF/XML, but would also accept HTML
with a lower preference: application/rdf+xml;q=1.0,text/html;q=0.4.
Note that a q value of 1.0 is the default and can be omitted. If a server
has both RDF/XML and HTML, it should return RDF/XML, because
the client has indicated a higher preference.

In the common case of negotiating between RDF and an HTML rendering
thereof, commonly observed problems include:

• not recognising media types if they include a parameter—e.g., text/html;charset=utf-
8 or application/rdf+xml;q=0.9;

• always sending HTML when several media types are specified in the
Accept header;

• always sending HTML when both RDF and HTML are in the Accept
header, even if RDF has a higher q value;

• choosing between RDF and HTML based on which appears first (or
last) in the Accept header, rather than based on their q values;

• redirecting to a nonexistent URI, such as something.rdf.html, when
both RDF and HTML are in the Accept header.

In particular, clients that accept both RDF/XML and HTML (e.g., browser
plugins and clients that support RDFa as well as RDF/XML) run into prob-
lems because of server implementation problems. . .

If, for whatever reason, it is impossible to implement the full algorithm in
the server environment, including q values, then an approximation will have
to do. Here is a good one:

1. If no Accept header is sent by the client, assume that the client wants
raw data; i.e., RDF/XML. (This is probably an unsophisticated client
that has not been properly written to actually emit an appropriate
Accept header, and it’s much more likely that such a client is a quickly
hacked data processing script than an HTML-processing Web browser.)

2. If a raw data format—such as application/rdf+xml—is mentioned, then
send that format. (A client that can process HTML and RDF/XML
can probably do more interesting things with the raw data, rather than
its human-readable rendering.)

3. In all other cases, send HTML. (It’s probably a Web browser.)

Note, however, that the existence of such heuristics is no excuse for not
implementing correct handling of q values.
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Content Negotiation with Missing Vary Header

Caches are essential to the efficient operation of the Web. HTTP caches sit
between client and server, and store any cacheable server responses. When
another client later on requests the same resource, then the cache may di-
rectly return the stored response. So the client receives a response without
the origin server being hit at all. This can significantly reduce server load.

But for this to work, the cache has to know which responses are cacheable
for what kinds of requests, and for how long. Servers can indicate this by
using various HTTP headers in their responses.

Content negotiation and the Vary header. If a resource has multiple
representations subject to content negotiation (e.g., it has an HTML repre-
sentation and an RDF representation), then caches must be made aware of
this. Otherwise they might return a cached HTML response to a client re-
questing RDF, not knowing that the server would handle these two requests
differently.

To make caches aware of multiple representations, the server must include
a Vary HTTP header with any response that is subject to content negotiation.
The value of the Vary header is one or more names of other HTTP headers:
the headers that the server uses to select a representation.

The typical case for content negotiation with RDF is that the Accept
header is used to select the appropriate representation. Therefore, a Vary
HTTP header like this has to be included in content-negotiated responses:

Vary: Accept

This will prevent caches from returning representations that were gen-
erated for a different Accept header, and will prevent hard-to-debug issues
where a client inexplicably sees responses in an unexpected format.

Naming and Dereferencability

In RDF, we name things, give things values for named properties, define
named relations to other named things and organise named things into named
classes; in RDF we use URIs as names, which enables dereferencing: the
URI name of a resource can be accessed, with the expectation that an RDF
document is returned with some description of the named resource. Now,
instead of copying and pasting all information available about all resources
named in the document (or exhaustively linking to other documents using,
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e.g., rdfs:seeAlso), one can simply use the dereferencable URI which an agent
can resolve for more information.

There are two “recipes” for creating dereferencable URIs: one uses hash-
based URIs whereas the other uses slash-based URIs. The best-practices for
both have been covered extensively in many documents, such as Best Practice
Recipes for Publishing RDF Vocabularies 9 and How to Publish Linked Data
on the Web 10. To summarise here—and possibly over-simplifying—dereferencable
hash-based URIs are best suited to group the descriptions of a small or mod-
erate number of related terms into one document and one location, allowing
an agent to retrieve the descriptions of multiple related terms with one HTTP
lookup; dereferencable slash-based URIs are best suited to provide individual
documents for each of a large number of terms, such that an agent will not
need to download a massive document to find the description of one term.

Redirects Other Than 303

Redirects are often used to point from the URI of a non-information re-
source to the document which describes it; in particular the 303 See Other
redirect is recommended. Although most agents will support other redirect
schemes—such as 301 Moved Permanently, or 302 Found—the 303 redirect
has been agreed upon as the most suitable for accessing resource descriptions
and should be used.

Malformed Datatype Literals

If a datatype-aware agent will receive an incorrect integer value, that agent
will disagree. Datatype classes have what is called a lexical representation
which defines the sequences of characters which are allowed in a literal of
that class. The lexical representations for all datatype classes are defined in
XML Schema Part 2: Datatypes Second Edition 11 .

integer has a lexical representation consisting of a finite-length
sequence of decimal digits (#x30-#x39) with an optional leading
sign. If the sign is omitted, ”+” is assumed.
For example: -1, 0, 12678967543233, +100000.

9http://www.w3.org/TR/swbp-vocab-pub/
10http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/
11http://www.w3.org/TR/xmlschema-2/
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From this, a datatype-aware agent will know that A is not a valid integer
literal: in fact, asserting otherwise is an inconsistency. Although this example
is fairly straightforward, many datatype classes have more complex lexical
forms. In particular, the datatypes classes relating to date and time are
subject to errors, the most common being dateTime:
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The lexical space of dateTime consists of finite-length sequences of
characters of the form: ’-’? yyyy ’-’ mm ’-’ dd ’T’ hh ’:’ mm ’:’ ss
(’.’ s+)? (zzzzzz)?, where

• ’-’? yyyy is a four-or-more digit optionally negative-signed
numeral that represents the year; if more than four digits,
leading zeros are prohibited, and ’0000’ is prohibited. . . ;

• the remaining ’-’s are separators between parts of the date
portion;

• the first mm is a two-digit numeral that represents the month;

• dd is a two-digit numeral that represents the day;

• ’T’ is a separator indicating that time-of-day follows;

• hh is a two-digit numeral that represents the hour; ’24’ is
permitted if the minutes and seconds represented are zero,
and the dateTime value so represented is the first instant of
the following day (the hour property of a dateTime. . . cannot
have a value greater than 23);

• ’:’ is a separator between parts of the time-of-day portion;

• the second mm is a two-digit numeral that represents the
minute;

• ss is a two-integer-digit numeral that represents the whole
seconds;

• ’.’ s+ (if present) represents the fractional seconds;

• zzzzzz (if present) represents the timezone (as described be-
low).

For example, 2002-10-10T12:00:00-05:00 (noon on 10 October 2002,
Central Daylight Savings Time as well as Eastern Standard Time
in the U.S.) is 2002-10-10T17:00:00Z, five hours later than 2002-10-
10T12:00:00Z.

The most common errors relating to dateTime include the use plain text
values such as 12:32 Feb 7 2008, the omission of the mandatory seconds field,
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and the omission of : delimiters.

Reasoning

Bogus Values for Inverse-Functional Properties

An inverse-functional property is a property whose value uniquely identifies a
resource. Examples include properties such as ISBN codes for books, social
security numbers for people, physical MAC addresses for devices, and so
on. Inverse-functional properties are pretty handy on the Web: oftentimes
people don’t agree on what URI to use for a particular resource; e.g., a
book; but as long as they give a consistent value for a consistent inverse-
functional property; e.g., use the same ISBN property with the same value
for that book; people don’t have to agree on URIs and a reasoner will be able
to conclude that it’s the same book being discussed. In other words, since
people don’t always agree upon URIs, inverse-functional properties allow
people to identify resources according to values already agreed upon (ISBNs,
SSNs, MACs, etc.).

Publishers sometimes give nonsensical values for inverse-functional prop-
erties. The most common example of this is the FOAF inverse-functional
property foaf:mbox sha1sum, intended to represent an encoded version of
a person’s email address, and defined to uniquely identify a person. This
property is commonly instantiated — particularly from social networking ex-
porters which externalise a public FOAF profile for each of their users—and
is subsequently used to match descriptions of people across different sites and
different URI naming schemes. Unfortunately however, many exporters do
not bother to validate user-input correctly (e.g., allow users to leave email
fields blank) and hence export bogus values for foaf:mbox sha1sum such as
08445a31a78661b5c746feff39a9db6e4e2cc5cf and da39a3ee5e6b4b0d3255bfef95601890afd80709;
the former is the encoded sha1-sum of the string “mailto:” and the latter is
the sha1-sum of an empty string. A quick Google 12 of the former value will
reveal hundreds of thousands of results, which upon quick inspection, are
mostly RDF files and values for foaf:mbox sha1sum. Now, a reasoner will
interpret any individual with this value for foaf:mbox sha1sum as being the
same person, resulting in what we call the “God Entity”: an omnipresent in-
dividual with hundreds of thousands of names, locations, friends, homepages,
and so on.

12http://www.google.com/search?q=08445a31a78661b5c746feff39a9db6e4e2cc5cf
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Inconsistencies

Inconsistencies can occur if trying to reconcile different world-views from
different data publishers. For example, an atheist will assert that God is
a ImaginaryBeing whereas a theist will assert that God is a RealBeing, al-
though ImaginaryBeing is clearly disjoint with RealBeing. Such disagree-
ment can occur even in more concrete domains: a botanist will assert that
a Tomato is a Fruit whereas a taxman will tell you that a Tomato is a Veg-
etable and apply a tariff accordingly. Such inconsistencies are due to genuine
disagreement between publishers and—with the danger here of getting more
coffee stains on lab-coats—are not a bad thing at all and probably best left
unresolved.

However, most inconsistencies currently found on the Web result directly
from mistakes in RDF documents or disagreement on the identification of
resources, and can be resolved. Also, almost all inconsistencies are caused
by resources found to be members of disjoint classes. One of the most com-
mon causes is using a URI to describe two completely different things: e.g.,
using a person’s homepage URI to identify both the homepage and the per-
son (clearly, a resource cannot be both a homepage and a person). Another
common cause is using a property or class on the basis of its label and not ver-
ifying that its semantics are suitable. For example, the somewhat generically
named foaf:img property is used to relate people to pictures they appear in,
and so has its domain defined as foaf:Person (thus, every resource described
with a value for foaf:img must be a foaf:Person); however, publishers com-
monly use this property on anything from documents to countries, leading
to inconsistencies.

The need for linking, the absence of links

The dream that inspired many Semantic Web researchers is that of a web
where bits of information are discovered and connected automatically because
they “matter” for the task at hand, possibly coming from any web location
and ultimately reused well beyond the purpose for which they were originally
created. Applied to news, this vision would allow a reader to get “second
and third” points of views when reading about a news article. Applied to
commerce it would ideally eliminate the need for advertising: sellers and
suppliers would simply “be found” for the characteristics of their offers.

Given no expected imminent breakthrough in the ways machine can un-
derstand content meant for human consumption, the idea of the Semantic
Web initiative has been that of proposing that Web Site “lend a hand” to
machines by encoding semantics using RDF. For years, however, RDF de-
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scriptions on the Web have been made available almost exclusively by web
data enthusiasts, i.e. by the Semantic Web community itself. Despite this,
the community has been able to made available a remarkable amount of in-
formation, the LOD cloud, to the point that many entities, e.g. encyclopedic
entities but also the people participating in the community, are often “de-
scribed” (have metadata about themselves in RDF) in several dozen different
independent RDF sources on the web.

The existence of descriptions alone, however, is not a sufficient condition
for this data to be discovered automatically. For this reason the LOD com-
munity has been advocating the reuse of URIs of other sites as a way to
create interlinks. In ”How to publish linked data” 13, it is explained that to
allow crawlers and agents to understand that a description is about some-
thing described also elsewhere, URIs from other sites should be used. For
these URIs to be found, one should first manually select datasets from a
maintained list of known datasets, then explore these to find suitable URIs
to link to, and this for each entity to be linked. It is suggested that auto-
matic methods be used when linking multiple entities [6] , but especially in
this case it is necessary to know a priory which specific dataset to link to
but and its schema in order to perform manual configuration of the matching
algorithms, something that requires a high degree of expertise.

This complexity, together with the – arguably temporary - lack of imme-
diate incentives for doing such task, makes it so that even among the LOD
community interlinks are scarce, a quick query on Sindice, currently indexing
approximately 65M semantic documents, shows that less than 4 million RDF
documents (usually entity descriptions from the LOD cloud) exhibit at least
1 sameAs link.

In the last year however LOD is rapidly becoming not the only source of
large amounts of RDF structured content. Thanks for the support of Google
and Yahoo for RDFa encoded content for advanced snippets, it is safe to say
that tens of millions of pages of database generated content have appeared,
but none of these, to the best of our knowledge, is providing interlinks among
descriptions on different websites.

It is safe to say that the problem of missing interlinks in RDFa descrip-
tions - and of the very little number of interlinks also in the Semantic Web
community - is “here to stay” because of the lack of perceived usefulness
that they bring to the person or entity which should put them. Links on the
web increase the value of a site by making it “more useful” to visitors, the
same cannot be said of invisible RDF links. Also to be of use one would ex-

13”How to publish linked data” Bizer, C., Cyganiak, R. Heath, T 2007. http://www4.

wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial
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pect to have many links from a single entry points, something which requires
manual or semi assisted 1 to 1 connections. Finally, for being consistent on
the Semantic Web, links would have to be bidirectional and maintained by
multiple parties at the same time, something which is in essence contrary to
the principles of decoupling which made the very web successful.

Furthermore there could be political and commercial reasons why a dataset
provider might not have any incentive to put links, e.g. when in a dominant
market position.

It is also partially recognizing these shortcomings that the EU project
LATC 14 , started in 2010 is now addressing these issues with the creation of
a 24/7 interlinking machine that is set to provide a core of high quality links
with the intention of encouraging more and more datasets producers to join
in and also use the LATC infrastructure to provide quality links.

14http://latc-project.eu/
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Chapter 4

Tool Support

4.1 Tools related to syntactic errors

The Validating RDF Parser (VRP)1 analyses, validates and processes
RDF schemas and resource descriptions. This parser offers syntactic
validation for checking if the input namespace conforms to the updated
RDF/XML syntax proposed by W3C, and semantic validation for ver-
ifying constraints derived from RDF Schema Specification (RDFS).

RDF Validation Service2 is based on HP-Labs Another RDF Parser (ARP17),
which currently uses the version 2-alpha-1. This service supports the
Last Call Working Draft specifications issued by the RDF Core Working
Group, including datatypes. It offers syntactic validation for checking
if the input namespace conforms to the updated RDF/XML syntax
proposed by W3C. However, this service does not do any RDFS vali-
dation.

4.2 Tools related to semantic errors

There are a number of reasoners3 which can detect logical errors in OWL
ontologies. Most of them are based on the tableau-algorithm but differ from
each other in the supported expressivity and optimizations. Moreover there
other kinds of reasoners, using e.g. resolution or rules. Next we will give a
short overview and a comparison in Tab. 4.2:

1Validating RDF Parser: http://139.91.183.30:9090/RDF/VRP/
2RDF Validation Service: http://www.w3.org/RDF/Validator/
3List of existing reasoners: http://www.cs.man.ac.uk/~sattler/reasoners.html
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Pellet[1] is a free open-source Java-based reasoner for SROIQ with simple
datatypes (i.e., for OWL 2). It implements a tableau-based decision
procedure for general TBoxes (subsumption, satisfiability, classifica-
tion) and ABoxes (retrieval, conjunctive query answering). It supports
the OWL-API, the DIG interface, and the Jena interface and comes
with numerous other features.

KAON2 is a free (free for non-commercial usage) Java reasoner for SHIQ
extended with the DL-safe fragment of SWRL. It implements a resolution-
based decision procedure for general TBoxes (subsumption, satisfiabil-
ity, classification) and ABoxes (retrieval, conjunctive query answering)[28].
It comes with its own, Java-based interface, and supports the DIG in-
terface.

RacerPro[13] is a commercial (free trials and research licenses are avail-
able) lisp-based reasoner for SHIQ with simple datatypes (i.e., for
OWL-DL with qualified number restrictions, but without nominals).
It implements a tableau-based decision procedure for general TBoxes
(subsumption, satisfiability, classification) and ABoxes (retrieval, nRQL
query answering). It supports the OWL-API and the DIG interface and
comes with numerous other features.

Fact++[36] is a free (GPL/LGPL) open-source C++-based reasoner for
SROIQ with simple datatypes (i.e., for OWL 2). It implements a
tableau-based decision procedure for general TBoxes (subsumption,
satisfiability, classification) and ABoxes (retrieval). It supports the
OWL-API, the lisp-API and the DIG interface.

HermiT s a free (under LGPL license) Java reasoner for OWL 2/SROIQ
with OWL 2 datatype support and support for description graphs. It
implements a hypertableau-based decision procedure[29, 30, 31], uses
the OWL API 3.0, and is compatible with the OWLReasoner interface
of the OWL API.

CEL[2] is a free (for non-commercial use) LISP-based reasoner for EL+. It
implements a refined version of a known polynomial-time classification
algorithm[3] and supports new features like module extraction and ax-
iom pinpointing. Currently, it accepts inputs in a small extension of
the KRSS syntax and supports the DIG interface.

SHER[8] is a commercial (free for academic use) Java-based reasoner for
SHIN . It is based on Pellet and uses database technology to reason
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about SHIN TBoxes and large scale ABoxes (retrieval, conjunctive
query answering)[10].

Algorithm Expressivity

Pellet Tableau SROIQ(D)
KAON2 Resolution & Datalog SHIQ(D)

RacerPro Tableau SHIQ(D)
Fact++ Tableau SROIQ(D)
HermiT Hypertableau SROIQ(D)

CEL Completion rules EL+
SHER Tableau & Database SHIN

Table 4.1: Overview about reasoning systems, the algorithm they use and
the supported expressivity.

There are a number of related tools for ontology repair:

Swoop4[23] is a Java-based ontology editor using web browser concepts. It
can compute justifications for the unsatisfiability of classes and offers a
repair mode. The fine-grained justification computation algorithm is,
however, incomplete.

RaDON5[20] is a plugin for the NeOn toolkit. It offers a number of tech-
niques for working with inconsistent or incoherent ontologies. It can
compute justifications and, similarly to Swoop, offers a repair mode.
RaDON also allows to reason with inconsistent ontologies and can han-
dle sets of ontologies (ontology networks).

PION and DION6 have been developed in the SEKT project to deal with
inconsistencies. PION is an inconsistency tolerant reasoner, i.e. it can,
unlike standard reasoners, return meaningful query answers in incon-
sistent ontologies. To achieve this, a four-valued paraconsistent logic is
used. DION offers the possibility to compute justifications, but cannot
repair inconsistent or incoherent ontologies.

Explanation Workbench7 is a Protégé plugin for reasoner requests like
class unsatisfiability or inferred subsumption relations. It can compute

4SWOOP: http://www.mindswap.org/2004/SWOOP/
5RaDON: http://radon.ontoware.org/demo-codr.htm
6PION: http://wasp.cs.vu.nl/sekt/pion/

DION: http://wasp.cs.vu.nl/sekt/dion/
7Explanation Workbench: http://owl.cs.manchester.ac.uk/explanation/
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regular and laconic justifications [16], which contain only those axioms
which are relevant for answering the particular reasoner request. This
allows to make minimal changes to resolve potential problems.

RepairTab has been developed for Protégé based on [26]. Its aim is to sup-
port the user in finding and detecting errors in ontologies. Similarly
to Explanation Workbench, it can compute explanations and display
those parts of the involved axioms, which are responsible for an incon-
sistency. The main difference is that RepairTab uses a modified tableau
algorithm. In addition, it shows the inferences, which can no longer be
drawn after removing an axiom.and allows the user to make meaning
additions to preserve those inferences, if desired.

4.3 Tools related to structural errors

The Validating RDF Parser (VRP) (described in Sec. 4.1)

RDF Validation Service (described in Sec. 4.1)

OWL Ontology Validator8 can be used to check if an ontology conforms
to a specific OWL species, since it validates an OWL ontology and
reports as a result the OWL language species to which the ontology
belongs: OWL Lite, OWL DL, and OWL Full. Besides, if requested,
the validator returns a description of the classes, properties and indi-
viduals in the ontology in terms of the OWL Abstract Syntax.

OWL Validator9 is based on the DAML Validator10 (it uses a modified
version of the Jena Toolkit). This tool is not a simple parser in the
sense that it checks OWL ontologies not only for problems related to
simple syntax errors, but also for other potential errors. The OWL
Validator does not aim at perfoming full reasoning or inferencing, but
only at checking these kinds of problems.

OdeVal[38] performs syntactic evaluation of RDF(S), DAML+OIL, and
OWL ontologies, and evaluates their concept taxonomies from the point
of view of knowledge representation using the ideas proposed in [12].
ODEval detects inconsistencies and redundancies in ontology concept
taxonomies.

8OWL Ontology Validator: http://www.mygrid.org.uk/OWL/Validator
9OWL Validator: http://owl.cs.manchester.ac.uk/validator/

10DAML Validator: http://www.daml.org/validator/
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4.4 Tools related to performance errors

Pellint11[27] is an open source lint tool for Pellet which flags and (option-
ally) repairs modelling constructs that are known to cause performance
problems. Pellint recognizes several patterns at both the axiom and on-
tology level as described in section 3.4.

4.5 Tools related to problems in Linked Data

W3C Markup Validation Service12 checks syntactic correctness for web
pages that contain embedded RDFa markup, provided the XHTML+RDFa
doctype is used. The validator however only checks validity according
to the RDFa DTD; this means that many kinds of errors, such as
undeclared namespace prefixes, or invalid datatyped literals, are not
detected.

Vapour13 is a Linked Data validator which checks the dereferencability of a
given URI and provides feedback on content negotiation/redirect codes
and can determine whether the given URI is an information resource
or a non-information resource. The system optionally checks whether
the resolved document contains data about the dereferenced URI and
has special features for performing checks on the dereferencability of
vocabulary terms and namespaces.

URI Debugger14 displays the request and response header for accessing a
given URI; the system further allows for specifying custom User-Agent
and Accept-Header fields. The content of the request is then displayed,
with all URIs displayed with a link to recursively debug.

Sindice Web Data Inspector15 is a tool to Visualize and Validate the
structured data content available at a given web location (URL). The
Web Data Inspector can be used to visualize and validate:

• RDF files

• HTML pages embedding microformats

• XHTML pages embedding RDFa

11Pellint: http://pellet.owldl.com/pellint
12W3C Markup Validation Service: http://validator.w3.org/
13Vapour: http://validator.linkeddata.org/vapour
14URI Debugger: http://linkeddata.informatik.hu-berlin.de/uridbg/
15Sindice Web Data Inspector: http://inspector.sindice.net
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The Web Data Inspector works as a chain of extraction, validation and
processing elements that create a final tabbed report. The services
provided are:

Visualization:

• Rich triple visualization – see the content as sortable RDF triples

• SVG-based zoomable graph visualization

• Frame based visualization

• ”Sig.ma” based visualization – a human friendly view of the main
”topic”

Inspection and Validation Services:

• RDF Syntax Validation – based on the same engine hosted by the
W3C

• RDFa Validator

• Pedantic Validation Service: performs reasoning and checks for
common errors as observed in RDF data found on the web

• Ontology services: upon request, the inspector will perform Linked
Data based ontology reasoning: ontologies are recursively fetched
and used to compute the inference closure of the statements in
the original data files. Inferred triples are visualized in a different
colour for the above visualizers

• Ontology explorer: the chain of imports between ontologies can
be explored in an interactive tree view
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Chapter 5

Conclusion

As we have reported in this work there exist different types of problems and
errors which can arise during the lifecycle of ontological knowledge bases and
Linked Data. As these problems are not new to the community there is also
a wide range of tools which were developed to tackle mostly one particular
type or a subset of kind of errors, but to the best of our knowledge there is no
system available which can handle all or even most of the problems. Further
in the context of Linked Data, especially for the detection of logical/semantic
errors, handling large amounts of data is a problem, because:

(a) Loading the whole data into standard OWL reasoners is nearly impos-
sible.

(b) Often, not all of the data can be downloaded at once, because it is only
available via Linked Data or a SPARQL endpoint. Downloading the
data via SPARQL Queries or visiting all Linked Data resources is very
time-consuming and puts a high load on the corresponding servers.

(c) Due to the nature of Linked Data, a network of knowledge bases needs
to be taken into account when analysing semantic problems.

For this reason, we suggest to focus the work in LOD2, in particular the
ORE tool, on the following aspects:

• Provide the possibility to analyse fragments of data instead of working
with all the data in a knowledge base. Focus on extracting information,
which is most relevant for detecting problems.

• Allow the possibility to access information via Linked Data and SPARQL
in addition to loading RDF/OWL files.
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• Use incremental reasoning and/or stream reasoning techniques to allow
continuously adding further information to extracted fragments.

• Cover the structural problems which can be detected automatically.

Overall, our conclusion is that there is a demand for a system, which can
handle most of the described problems and errors, which can automatically
be detected, and is also be able to work on large knowledge bases in an
efficient way. This goal will be pursued within the LOD2 project.
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