
LOD2 Deliverable 3.2.2

DBpedia-Live Extraction

Mohamed Morsey, Jens Lehmann

Dissemination Level Public
Due Date of Deliverable Month 8, 30/4/2011
Actual Submission Date 7/6/2011
Work Package WP3, Knowledge Base Creation, Enrichment and Repair
Task Task T3.2
Type Report
Approval Status Approved
Version 1.0
Number of Pages 20
Filename deliverable-3.2.2.pdf

Abstract: DBpedia is the Semantic Web mirror of Wikipedia. Wikipedia
users constantly revise Wikipedia articles almost each second. Hence, data
stored in DBpedia triplestore can quickly become outdated, and Wikipedia
articles need to be re-extracted. DBpedia-Live, the result of this deliverable,
enables such a continuous synchronization between DBpedia and Wikipedia.

The information in this document reflects only the author’s views and the European Community is not liable for
any use that may be made of the information contained therein. The information in this document is provided “as is”
without guarantee or warranty of any kind, express or implied, including but not limited to the fitness of the information
for a particular purpose. The user thereof uses the information at his/ her sole risk and liability.

Project funded by the European Commission within the Seventh Framework Programme (2007 – 2013)

LOD2 (222011) DBpedia Live

History

Version Date Reason Revised by

0.1 2011-05-16 Initial version Jens Lehmann
0.5 2011-05-18 First deliverable version Mohamed Morsey
1.0 2011-05-23 Deliverable revised and

extended
Jens Lehmann

Author list

Organisation Name Contact Information

ULEI Mohamed Morsey morsey@informatik.uni-
leipzig.de

ULEI Jens Lehmann lehmann@informatik.uni-
leipzig.de

Executive summary

This deliverable contains a brief description of DBpedia Live – the synchronisation
framework for aligning Wikipedia and DBpedia. D3.2.2 is a software prototype
deliverable. We made all source code openly available in the DBpedia code repos-
itory, provide a public SPARQL endpoint and access to all changes performed by
DBpedia Live.

Deliverable 3.2.2 Page 2

Contents

1 Introduction 4

2 Overview 6

3 Live Extraction Framework 10
3.1 General System Architecture . 10
3.2 Extraction Manager . 11

4 Wiki-Based Ontology Engineering 14

5 New Features 16
5.1 Abstract Extraction . 16
5.2 Mapping-Affected Pages . 17
5.3 Unmodified Pages . 18
5.4 Changesets . 18
5.5 Important Pointers . 19

Bibliography 20

3

1 Introduction

DBpedia is the result of a community effort to extract structured information
from Wikipedia, which in turn is the largest online encyclopedia and currently
the 7th most visited website according to alexa.com. Over the past four years the
DBpedia knowledge base has turned into a crystallization point for the emerging
Web of Data. Several tools have been built on top of it, e.g. DBpedia Mobile1,
Query Builder2, Relation Finder[6], and Navigator3. It is used in a variety of
applications, for instance Muddy Boots, Open Calais, Faviki, Zemanta, LODr,
and TopBraid Composer (cf. [5]).

Despite this success, a disadvantage of DBpedia has been the heavy-weight
release process. Producing a release requires manual effort and – since dumps
of the Wikipedia database are created on a monthly basis – DBpedia has never
reflected the current state of Wikipedia.

In this deliverable, we present a live extraction framework, which allows DB-
pedia to be up-to-date with a minimal delay of only a few minutes. The main
motivation behind this enhancement is that our approach turns DBpedia into a
real-time editable knowledge base, while retaining the tight coupling to Wikipedia.
It also opens the door for an increased use of DBpedia in different scenarios. For
instance, a user may like to add to her movie website a list of highest grossing
movies produced in the current year. Due to the live extraction process, this be-
comes much more appealing, since the contained information will be as up-to-date
as Wikipedia instead of being several months delayed.

Overall, we make the following contributions:

� migration the previous incomplete DBpedia-Live framework, which was PHP-
based, to the new Java-based framework, which also maintains up-to-date
information,

� addition of abstract extraction capability,

� re-extraction of mapping-affected pages,

� flexible low-priority re-extraction of pages, which have not been modified for
a longer period of time – this allows changes in the underlying extraction
framework, which potentially affect all Wikipedia pages, while still process-
ing the most recent Wikipedia changes

1http://beckr.org/DBpediaMobile/
2http://querybuilder.dbpedia.org
3http://navigator.dbpedia.org

4

alexa.com
http://beckr.org/DBpediaMobile/
http://querybuilder.dbpedia.org
http://navigator.dbpedia.org

LOD2 (222011) DBpedia Live

� publishing added and deleted triples as compressed N-Triples file.

� building a synchronization tool, which downloads those those compressed N-
Triples files, and update another triplestore with them accordingly, in order
to keep it in synchronization with ours.

� deployment of the framework on our server.

Deliverable 3.2.2 Page 5

2 Overview

The core of DBpedia consists of an infobox extraction process, which was first
described in [2]. Infoboxes are templates contained in many Wikipedia articles.
They are usually displayed in the top right corner of articles and contain factual
information (cf. Figure 2.1). The infobox extractor processes an infobox as follows:
The DBpedia URI, which is created from the Wikipedia article URL, is used as
subject. The predicate URI is created by concatenating the namespace fragment
http://dbpedia.org/property/ and the name of the infobox attribute. Objects
are created from the attribute value. Those values are pre-processed and converted
to RDF to obtain suitable value representations. For instance, internal MediaWiki
links are converted to DBpedia URI references, lists are detected and represented
accordingly, units are detected and converted to standard datatypes etc. Nested
templates can also be handled, i.e. the object of an extracted triple can point to
another complex structure extracted from a template.

Apart from the infobox extraction, the framework has currently 12 extractors
which process the following types of Wikipedia content:

� Labels. All Wikipedia articles have a title, which is used as an rdfs:label

for the corresponding DBpedia resource.

� Abstracts. We extract a short abstract (first paragraph, represented by using
rdfs:comment) and a long abstract (text before a table of contents, using
the property dbpedia:abstract) from each article.

� Interlanguage links. We extract links that connect articles about the same
topic in different language editions of Wikipedia and use them for assigning
labels and abstracts in different languages to DBpedia resources.

� Images. Links pointing at Wikimedia Commons images depicting a resource
are extracted and represented by using the foaf:depiction property.

� Redirects. In order to identify synonymous terms, Wikipedia articles can
redirect to other articles. We extract these redirects and use them to resolve
references between DBpedia resources.

� Disambiguation. Wikipedia disambiguation pages explain the different mean-
ings of homonyms. We extract and represent disambiguation links by using
the predicate dbpedia:wikiPageDisambiguates.

6

LOD2 (222011) DBpedia Live

{{Infobox settlement

| official_name = Algarve

| settlement_type = Region

| image_map = LocalRegiaoAlgarve.svg

| mapsize = 180px

| map_caption = Map showing Algarve

Region in Portugal

| subdivision_type = [[Countries of the

world|Country]]

| subdivision_name = {{POR}}

| subdivision_type3 = Capital city

| subdivision_name3 = [[Faro, Portugal|Faro]]

| area_total_km2 = 5412

| population_total = 410000

| timezone = [[Western European

Time|WET]]

| utc_offset = +0

| timezone_DST = [[Western European

Summer Time|WEST]]

| utc_offset_DST = +1

| blank_name_sec1 = [[NUTS]] code

| blank_info_sec1 = PT15

| blank_name_sec2 = [[GDP]] per capita

| blank_info_sec2 = ¿19,200 (2006)

}}

Figure 2.1: Mediawiki infobox syntax for Algarve (left) and rendered infobox
(right).

� External links. Articles contain references to external Web resources which
we represent by using the DBpedia property dbpedia:wikiPageExternalLink.

� Page links. We extract all links between Wikipedia articles and represent
them by using the dbpedia:wikiPageWikiLink property.

� Wiki page. Links a Wikipedia article to its corresponding DBpedia resource,
e.g. (<http://en.wikipedia.org/wiki/Germany>
<http://xmlns.com/foaf/0.1/primaryTopic>

<http://dbpedia.org/resource/Germany>.).

� Homepages. This extractor obtains links to the homepages of entities such as
companies and organizations by looking for the terms homepage or website
within article links (represented by using foaf:homepage).

� Geo-coordinates. The geo-extractor expresses coordinates by using the Ba-
sic Geo (WGS84 lat/long) Vocabulary1 and the GeoRSS Simple encoding of

1http://www.w3.org/2003/01/geo/

Deliverable 3.2.2 Page 7

http://www.w3.org/2003/01/geo/

LOD2 (222011) DBpedia Live

the W3C Geospatial Vocabulary2. The former expresses latitude and longi-
tude components as separate facts, which allows for simple areal filtering in
SPARQL queries.

� Person data. It extracts personal information such as surname, and birth
date. This information is represented in predicates like foaf:surname, and
dbpedia:birthDate.

� PND. For each person, there is a record containing his name, birth and
occupation connected with a unique identifier, which is the PND (Personen-
namendatei) number. PNDs are published by the German national library.
A PND is related to its resource via dbpedia:individualisedPnd.

� SKOS categories. It extracts information about which concept is a category
and how categories are related using the SKOS Vocabulary.

� Page ID. Each Wikipedia article has a unique ID. This extractor extracts
that ID and represents it using dbpedia:wikiPageID.

� Revision ID. Whenever a Wikipedia article is modified, it gets a new Revi-
sion ID. This extractor extracts that ID and represents it using
dbpedia:wikiPageRevisionID.

� Category label. Wikipedia articles are arranged in categories, and this ex-
tractor extracts the labels for those categories.

� Article categories. Relates each DBpedia resource to its corresponding cat-
egories.

� Mappings. It extracts structured data based on hand-generated mappings
of Wikipedia infoboxes to the DBpedia ontology. First, it loads all infobox
mappings defined for the required languages, English only in that case, from
the mappings wiki. The mappings wiki is available at http://mappings.

dbpedia.org. It then extracts the value of each Wikipedia property defined
for that type of infobox, and generates an appropriate triple for it, based
on mappings. We will explain DBpedia mappings, and mappings Wiki in
Chapter 4.

� Infobox. It extracts all properties from all infoboxes, and the extracted infor-
mation is represented using properties in the http://dbpedia.org/property/
namespace. The names of these properties reflect the names of properties of
Wikipedia infoboxes, as described before.

Subsequently, DBpedia has turned into the central knowledge base within the
Linking Open Data Initiative (see also [1]). It has been interlinked with other

2http://www.w3.org/2005/Incubator/geo/XGR-geo/

Deliverable 3.2.2 Page 8

http://mappings.dbpedia.org
http://mappings.dbpedia.org
http://www.w3.org/2005/Incubator/geo/XGR-geo/

LOD2 (222011) DBpedia Live

knowledge bases like Geonames, EuroStat, the CIA World Factbook, Freebase,
OpenCyc, etc. The collection of this information and its free availability via
Linked Data and SPARQL have attracted wide attention within and beyond the
Semantic Web community.

While DBpedia was used by an increasing number of developers, a major ob-
stacle was the lack of structure. For instance, there were several spellings of the
property “birthPlace” (denoting the place where a person was born) due to the
generic nature of the infobox extractor. There was no resolution of synonymous
attribute names, which made writing queries against generic infobox data rather
cumbersome. As Wikipedia attributes do not have explicitly defined datatypes, a
further problem is the relatively high error rate of the heuristics that are used to
determine the datatypes of attribute values. Both problems were partially solved
by a mapping-based extraction approach (see [5]): A DBpedia ontology was de-
veloped and attribute names were mapped to properties within the ontology. The
ontology was created by manually arranging the 350 most commonly used infobox
templates within the English edition of Wikipedia into a subsumption hierarchy
consisting of 305 classes and then mapping 2350 attributes from within these tem-
plates to 1425 ontology properties. The property mappings also define fine-grained
rules on how to parse infobox values and define target datatypes, which help the
parsers to process attribute values. For instance, if a mapping defines the target
datatype to be a list of links, the parser will ignore additional text that might be
present in the attribute value.

Deliverable 3.2.2 Page 9

3 Live Extraction Framework

In this section, we present the design of the DBpedia Live Extraction framework
and the new features added to it.

A prerequisite for being able to perform a live extraction is an access to changes
made in Wikipedia. The WikiMedia foundation kindly provided us access to
their update stream, the Wikipedia OAI-PMH 1 live feed. The protocol allows to
pull updates in XML via HTTP. A Java component, serving as a proxy, constantly
retrieves new updates and feeds the DBpedia framework. The proxy is necessary to
decouple the stream from the framework to simplify maintenance of the software.
It also handles other maintenance tasks such as the removal of deleted articles
and it processes the new templates, which we will introduce in Chapter 5. The
live extraction workflow uses this update stream to extract new knowledge upon
relevant changes in Wikipedia articles.

3.1 General System Architecture

The general system architecture of DBpedia-Live is depicted in Figure 3.1. The
main components of DBpedia-Live system are as follows:

� Local Wikipedia: We have installed a local Wikipedia that will be in syn-
chronization with Wikipedia. The Open Archives Initiative Protocol for
Metadata Harvesting (OAI-PMH) [4] enables an application to get a contin-
uous stream of updates from a wiki. OAI-PMH is also used to feed updates
into DBpedia-Live Extraction Manager.

� Mapping Wiki: DBpedia mappings can be found at http://mappings.

dbpedia.org. It is also a wiki. We can also use OAI-PMH to get stream of
updates in DBpedia mappings. Basically, a change of mapping affects several
Wikipedia pages, which should be reprocessed. We will explain mappings
in more detail in Chapter 4.

� DBpedia-Live Extraction Manager: This component is the actual DBpedia-
Live extraction framework. When there is a page that should be processed,
the framework applies the extractors on it. After processing a page, the
newly extracted triples are inserted into the backend triple store (Virtuoso),
overwriting the old triples. The newly extracted triples are also written

1Open Archives Initiative Protocol for Metadata Harvesting, cf. http://www.mediawiki.org/
wiki/Extension:OAIRepository

10

http://mappings.dbpedia.org
http://mappings.dbpedia.org
http://www.mediawiki.org/wiki/Extension:OAIRepository
http://www.mediawiki.org/wiki/Extension:OAIRepository

LOD2 (222011) DBpedia Live

Figure 3.1: General DBpedia-Live system architecture.

as N-Triples file and compressed. Other applications or DBpedia-Live mir-
rors that should always be in synchronization with our DBpedia-Live can
download those files and feed them into its own triplestore. The extraction
manager is discussed in more detail below.

3.2 Extraction Manager

Figure 3.2 gives a detailed overview of the DBpedia knowledge extraction frame-
work. The main components of the framework are:

� PageCollections which are an abstraction of local or remote sources of Wikipedia
articles,

� Destinations that store or serialize extracted RDF triples,

� Extractors which turn a specific type of wiki markup into triples,

� Parsers which support the extractors by determining datatypes, converting
values between different units and splitting markups into lists.

� ExtractionJob groups a page collection, extractors and a destination into a
workflow.

� The core of the framework is the Extraction Manager which manages the
process of passing Wikipedia articles to the extractors and delivers their
output to the destination. The Extraction Manager also handles URI man-
agement and resolves redirects between articles.

Deliverable 3.2.2 Page 11

LOD2 (222011) DBpedia Live

Figure 3.2: Overview of DBpedia Live Extraction framework.

In live extraction mode, article texts are accessed via the LiveWikipedia page
collection, which obtains the current version of the article, which was preprocessed
by the Java proxy from the OAI-PMH stream. The content is comprised of the
current Wikisource code, language (English only at the moment), an OAI identifier
and a page revision id2. The SPARQL-Update Destination deletes existing triples
and inserts new ones into the target triple store. According to our measurements,
about 1.4 article pages are updated each second on Wikipedia. This amounts
to 120,000 page updates per day and a maximum processing time of 0.71s per
page for the live extraction framework. Currently, the framework can handle up
to 1.8 pages per second on a 2.8 GHz machine with 6 core CPUs (this includes
consumption from the stream, extraction, diffing and loading the triples into a
Virtuoso triple store, and writing the updates into compressed files)3. Performance
is one of the major engineering hurdles we had to take in order to be able to
deploy the framework. The time lag for DBpedia to reflect Wikipedia changes lies
between one and two minutes. The bottleneck here is the update stream, since
changes normally need more than one minute to arrive from Wikipedia.

Apart from performance, another important problem is to identify which triples
have to be deleted and re-extracted upon an article change. DBpedia contains a

2see here for an example http://en.wikipedia.org/wiki/Special:Export/Algarve
3see current statistics at http://live.dbpedia.org/livestats

Deliverable 3.2.2 Page 12

http://en.wikipedia.org/wiki/Special:Export/Algarve
http://live.dbpedia.org/livestats

LOD2 (222011) DBpedia Live

“static” part, which is not affected by the live extraction framework. This includes
links to other knowledge bases, which are manually updated as well as the YAGO4

and Umbel5 class hierarchies, which can not be updated via the English Update
Stream. We store the structure of those triples using a SPARQL graph pattern.
Those static triples are stored in a separate graph. All other parts of DBpedia are
maintained by the extraction framework. We redesigned the extractors in such a
way that each generates triples with disjoint properties. Each extractor can be
in one of three states: active, keep, and purge. Depending on the state when
a Wikipedia page is changed, the triples extracted by this extractor are either
updated (active), not modified (keep), or removed (purge).

In order to decide which triples were extracted by an extractor, and also to
identify the triples that should be replaced we use an RDB (relational database)
assisted method, which is described in more detail in [7]. We create an RDB table
consisting of 3 fields, namely page id, resource uri, and serialized data. Page id
is the unique ID of the Wikipedia page. Resource uri is the URI of DBpedia
resource representing that Wikipedia article in DBpedia. Serialized data is the
JSON representation of all extracted triples. It is worth noting here that we store
the extractor responsible for each group of triples along with those triples in that
field. Whenever a Wikipedia page is edited, the extraction method generates a
JSON object holding information about each extractor and its generated triples.
After serialization of such an object, it will be stored in combination with the
corresponding page identifier. In case a record with the same page identifier
already exists in this table, this old JSON object and the new one are compared.
The results of this comparison are two disjoint sets of triples which are used on
the one hand for adding statements to the DBpedia RDF graph and on the other
hand for removing statements from this graph.

We had to make a number of further changes within the DBpedia extraction
framework in order to support live extraction. For instance, to parse article ab-
stracts properly, we need to be able to resolve templates. This can only be done
if (parts of) the MediaWiki database for the corresponding language edition is
(are) available. For this reason we delegate updates from the stream to the Medi-
aWiki database so that the local MediaWiki database remains in sync. In general,
all parts of the DBpedia framework, which relied on static databases, files etc.,
needed to be exchanged so that no user interaction is required. Also, the frame-
work had to be refactored to be language independent to make it compatible to
future deployment on language specific DBpedia versions such as the Greek or
German DBpedia 6.

4http://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html
5http://fgiasson.com/blog/index.php/2008/09/04/exploding-dbpedias-domain-using-umbel/
6http://de.dbpedia.org

Deliverable 3.2.2 Page 13

http://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html
http://fgiasson.com/blog/index.php/2008/09/04/exploding-dbpedias-domain-using-umbel/
http://de.dbpedia.org

4 Wiki-Based Ontology Engineering

Since the core of DBpedia is the information contained in infoboxes, they are the
most interesting target for the extraction of ontological knowledge. Each infobox
is mapped to a class in the DBpedia ontology and each attribute in the infobox
is mapped to a property. We keep DBpedia ontology and mappings externally
in another wiki, which is the Mappings-Wiki. Details about this can be found
in [5] and [3]. We provide a brief description in this deliverable, since the map-
ping wiki is also used in DBpedia Live. Through this wiki, a DBpedia user can
add more ontology classes, control ontology classes hierarchy. A DBpedia user
can also change mappings, i.e. change the relation between an infobox and its
corresponding ontology class and/or an infobox property and its corresponding
ontology property.

Figure 4.1: Mapping for infobox of a book.

Figure 4.1 indicates a sample mapping for infobox of a book. This figure in-

14

LOD2 (222011) DBpedia Live

dicates only a subset of mappings as there are more properties associated with
that type of infobox. As indicated in the figure this infobox is mapped to Book
ontology class in DBpedia. Infobox property “name” is mapped to DBpedia prop-
erty “foaf:name”, whereas infobox property “translator” is mapped to DBpedia
property “translator” in DBpedia namespace.

The DBpedia ontology is based on OWL and forms the structural backbone of
DBpedia. It describes classes e.g. soccer player, city, and movie. It also describes
properties e.g. birth place, area, and running time. The DBpedia ontology wiki
can be found at http://mappings.dbpedia.org.

In order for a user to be able to edit the mapping wiki, he/she should register
him/herself first. Afterwards, the user should contact DBpedia maintainers to get
editor rights on that mappings wiki.

Using that wiki for ontology engineering has several advantages:

� enables any DBpedia user, with little knowledge about wiki scripting, to
help DBpedia maintainers in extending and enhancing the ontology.

� enables users to add mapping for other languages, e.g. French, with ease.

� DBpedia-Live can get a stream of updates as it does with Wikipedia it-
self, which enables detecting and reprocessing pages affected by a mapping
change. We will explain that process in more detail in 5.2.

Deliverable 3.2.2 Page 15

http://mappings.dbpedia.org

5 New Features

The old php-based framework is deployed on one of OpenLink1 servers and cur-
rently has a SPARQL endpoint at http://dbpedia-live.openlinksw.com/sparql.

In addition to the migration to Java, the new DBpedia-Live framework has the
following new features:

1. Abstract extraction: The abstract of of a Wikipedia article are the first few
paragraphs of that article. The new framework has the ability to cleanly
extract the abstract of an article.

2. Mapping-affected pages: Upon a change in mapping, the pages affected by
that mapping should be reprocessed and their triples should be updated to
reflect that change.

3. Updating unmodified pages: Sometimes a change in the system occurs, e.g. a
change in the implementation of an extractor. This change can affect many
pages even if they are not modified. In DBpedia Live, we use a low-priority
queue for such changes, such that the updates will eventually appear in
DBpedia Live, but recent Wikipedia updates are processed first.

4. Publication of changesets: Upon modifications old triples are replaced with
updated triples. Those added and/or deleted triples are also written as N-
Triples files and then compressed. Any client application or DBpedia-Live
mirror can download those files and integrate and, hence, update a local copy
of DBpedia. This enables that application to always in synchronization with
our DBpedia-Live.

In the following sections, we will describe each feature in detail.

5.1 Abstract Extraction

The abstract extractor extracts two types of abstracts:

1. Short abstract: is the first paragraph from a Wikipedia article and is repre-
sented in DBpedia by rdfs:comment.

2. Long abstract: is the whole text before table of contents in an article, which
is represented by dbpedia:abstract.

1http://www.openlinksw.com/

16

http://dbpedia-live.openlinksw.com/sparql
http://www.openlinksw.com/

LOD2 (222011) DBpedia Live

The hurdle of abstract extraction is the resolution of templates. A template is a
simple sequence of characters that has a special meaning for Wikipedia. Wikipedia
renders those templates in a specific way.

The following example indicates a typical Wikipedia template

{{convert|1010000|km2|sp=us}}

This templates tells Wikipedia that the area of some country is 1010000 square
kilometers, and when it is rendered, Wikipedia should display its area in both
square kilometers, and square miles. So, Wikipedia will render it as “1,010,000
square kilometers (390,000 sq mi)”. DBpedia should behave similarly towards
those templates.

In order to resolve those templates used in the abstract of the article, we should
install a copy of Wikipedia. The required steps to install a local copy of Wikipedia
are:

1. MySQL: Install MySQL server as back-end relational database for Wikipedia.

2. SQL dumps: Download the latest SQL dumps for Wikipedia, which are
freely available at http://dumps.wikimedia.org/enwiki/.

3. Clean SQL dumps: Those SQL dumps need some adjustment, before you
can insert them into MySQL. You can perform this adjustment by running
“clean.sh”, which you can download from the website containing the source-
code, see Section 5.5.

4. Import SQL dumps: You can now use script called “import.sh”, which is
also available with the sourcecode.

5. HTTP Server: Apache server should be installed, which will provide a front-
end for abstract extraction.

5.2 Mapping-Affected Pages

Whenever a mapping change occurs, some pages should be reprocessed. For ex-
ample, in Figure 4.1, if the template property called translator, which is mapped
to DBpedia property translator, is changed to another property, then all entities
belonging to the class Book should be reprocessed. Upon a mapping change, we
identify the list of affected DBpedia entities, along with IDs of their corresponding
Wikipedia pages.

Basically, the DBpedia-Live framework has a priority-queue which contains all
pages waiting for processing. This priority-queue is considered the backbone of our
framework as several streams including the live-update stream, mapping-update
stream, and unmodified-pages stream, place the IDs of their pages in this queue.
DBpedia-live consumes the contents of that queue taking the priority of updates
into account.

Deliverable 3.2.2 Page 17

http://dumps.wikimedia.org/enwiki/

LOD2 (222011) DBpedia Live

Specifically, IDs of pages fetched from the live update stream are placed in that
queue with the highest priority. The IDs of pages affected by a mapping change
are also placed in that queue but with lower priority.

5.3 Unmodified Pages

Naturally, there is a large variation of the update frequency of individual articles
in Wikipedia. If any change in the DBpedia extraction framework occurs, e.g. a
modification of the implementation of an extractor or an addition of a new ex-
tractor, this will not be a problem for the frequently updated articles as it is likely
that they will be reprocessed soon.

However, less frequently updated articles may not be processed for several
months and would, therefore, not reflect the current implementation state of the
extraction framework. To overcome this problem, we obtain the IDs of pages
which have not been modified between one and three months ago, and place their
IDs in our priority-queue. Those pages have the lowest priority in order not to
block or delay live extraction.

Since we use a local synchronized instance of the Wikipedia database, we can
query this instance to obtain the list of such articles, which have not been modified
between one and three months ago. Directing those queries against Wikipedia
itself would place a too high burden on the Wikipedia servers, because the number
of unmodified pages can be very large.

5.4 Changesets

Whenever a Wikipedia article is processed, we get two disjoint sets of triples.
A set for added triples, and another set for deleted triples. We write those 2
sets into N-Triples files, compress them, and publish the compressed files on our
server. If another triples store wants to synchronise with DBpedia-Live, it can
just download those files, decompress them and integrate them with its store.

The folder to which we publish the changesets has a specific structure. The
folder structure is as follows:

� The parent folder contains a folder for each year while running, e.g. 2010,
2011, 2012,

� The folder of a year contains a folder for each month passed while running,
e.g. 1, 2, 3, ..., 12.

� The folder of a month contains a folder for each day passed while running,
e.g. 1, 2, 3,, 28/29/30/31.

� The folder of a day contains a folder for each hour passed while running, e.g.
0, 1, 2,, 23.

Deliverable 3.2.2 Page 18

LOD2 (222011) DBpedia Live

� Inside the folder of an hour, we write the compressed N-Triples files with
added or removed, e.g. 000000.added.nt.gz and 000000.removed.nt.gz. This
represents the 2 disjoint sets of added and/or removed triples.

To clarify that structure lets take that example:

dbpedia_publish/2011/06/02/15/000000.added.nt.gz

and

dbpedia_publish/2011/06/02/15/000000.removed.nt.gz

This indicates that in year 2011, in 6th month of that year, 2nd day of that
month, in hour 15, 2 files written, one for added triples, and one for removed
triples.

We have also developed a light-weight tool for downloading those files, decom-
pressing them and integrating them with another DBpedia-Live mirror. An inter-
ested user can download this tool (see URL below) and configure it properly, i.e.
configure the address of his/her triplestore, login credentials for that triplestore,
and so forth. Afterwards, he/she can run it to synchronize that triplestore with
ours.

5.5 Important Pointers

� SPARQL-endpoint: The DBpedia-Live SPARQL-endpoint can be accessed
at http://live.dbpedia.org/sparql.

� DBpedia-Live Statistics: Some simple statistics are provided upon extrac-
tion on http://live.dbpedia.org/livestats.

� Updates: The N-Triples files containing the updates can be found at http:
//live.dbpedia.org/liveupdates.

� DBpedia-Live Sourcecode: http://dbpedia.hg.sourceforge.net/hgweb/
dbpedia/extraction_framework.

� Synchronization Tool: http://sourceforge.net/projects/dbpintegrator/
files/.

Deliverable 3.2.2 Page 19

http://live.dbpedia.org/sparql
http://live.dbpedia.org/livestats
http://live.dbpedia.org/liveupdates
http://live.dbpedia.org/liveupdates
http://dbpedia.hg.sourceforge.net/hgweb/dbpedia/extraction_framework
http://dbpedia.hg.sourceforge.net/hgweb/dbpedia/extraction_framework
http://sourceforge.net/projects/dbpintegrator/files/
http://sourceforge.net/projects/dbpintegrator/files/

Bibliography

[1] Sören Auer, Chris Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. DBpedia: A nucleus for a web of open data. In Proceedings
of the 6th International Semantic Web Conference (ISWC), volume 4825 of
Lecture Notes in Computer Science, pages 722–735. Springer, 2008.

[2] Sören Auer and Jens Lehmann. What have innsbruck and leipzig in common?
extracting semantics from wiki content. In Enrico Franconi, Michael Kifer, and
Wolfgang May, editors, The Semantic Web: Research and Applications, 4th
European Semantic Web Conference, ESWC 2007, Innsbruck, Austria, June
3-7, 2007, Proceedings, volume 4519 of Lecture Notes in Computer Science,
pages 503–517. Springer, 2007.

[3] Sebastian Hellmann, Claus Stadler, Jens Lehmann, and Sören Auer. DBpe-
dia live extraction. In Proc. of 8th International Conference on Ontologies,
DataBases, and Applications of Semantics (ODBASE), volume 5871 of Lec-
ture Notes in Computer Science, pages 1209–1223, 2009.

[4] Carl Lagoze, Herbert Van de Sompel, Michael Nelson, and Simeon Warner.
The open archives initiative protocol for metadata harvesting. http://www.

openarchives.org/OAI/openarchivesprotocol.html, 2008.

[5] Jens Lehmann, Chris Bizer, Georgi Kobilarov, Sören Auer, Christian Becker,
Richard Cyganiak, and Sebastian Hellmann. DBpedia - a crystallization point
for the web of data. Journal of Web Semantics, 7(3):154–165, 2009.

[6] Jens Lehmann, Jörg Schüppel, and Sören Auer. Discovering unknown con-
nections - the DBpedia relationship finder. In Proceedings of the 1st SABRE
Conference on Social Semantic Web (CSSW), 2007.

[7] Claus Stadler, Michael Martin, Jens Lehmann, and Sebastian Hellmann. Up-
date Strategies for DBpedia Live. In Gregory Todd Williams Gunnar Aas-
trand Grimnes, editor, Proc. of 8th International Conference on Ontologies,
DataBases, and Applications of Semantics (ODBASE), volume 699 of CEUR
Workshop Proceedings ISSN 1613-0073, February 2010.

20

http://www.openarchives.org/OAI/openarchivesprotocol.html
http://www.openarchives.org/OAI/openarchivesprotocol.html

	Introduction
	Overview
	Live Extraction Framework
	General System Architecture
	Extraction Manager

	Wiki-Based Ontology Engineering
	New Features
	Abstract Extraction
	Mapping-Affected Pages
	Unmodified Pages
	Changesets
	Important Pointers

	Bibliography

