
Towards Integrating Fuzzy Logic Capabilities into an Ontology-based Inductive
Logic Programming Framework

Josué Iglesias
Telecommunications Engineering School
Technical University of Madrid, Spain

Email: josue@grpss.ssr.upm.es

Jens Lehmann
Department of Computer Science
University of Leipzig, Germany

Email: lehmann@informatik.uni-leipzig.de

Abstract—Ontologies based on Description Logics (DLs)
have proved to be useful in formally sharing knowledge across
applications. Recently, several tools have extended ontologies
with fuzzy logic capabilities in order to apply ontology-based
reasoning to vague and imprecise domains. This paper first
analyses the state of the art in tools for fuzzy ontologies man-
agement and then describes how some of the most significant
ones have been integrated in order to extend an ontology-
based Inductive Logic Programming (ILP) system with fuzzy
logic capabilities. A fuzzy version of a well-known ILP test
case has been developed in order to validate the approach.
This research represents a first step towards fuzzy inductive
reasoning for OWL ontologies.

Keywords-ontologies; fuzzy logic; inductive learning pro-
gramming

I. INTRODUCTION AND MOTIVATION

During the past 20 years, information systems have expe-
rienced significant improvements in intelligent information
processing, thereby stimulating advances in the Knowledge
Management area. The popularity of Internet technologies
has led to combinations of Knowledge Management and
web technologies, for instance in the area of Semantic Web.
Since ontologies based on the OWL W3C standard form
the backbone of a number of Semantic Web applications,
the underlying Description Logics are now one of the
most widely used knowledge representation formalisms in
the web. Reasoning is one of the key features of these
technologies, with a huge variety of possible application
domains and different reasoning techniques for solving each
particular problem.

Reasoning over imperfect information, which is inherent
to most of the real world application domains, is one of the
main research issues in Knowledge Management. In a broad
sense, two approaches can be used to deal with non perfect
information. The probabilistic approach is able to deal with
the uncertain nature of the information (e.g., modelling
sensor accuracy when acquiring data) whereas the fuzzy
logic one is able to manage the vagueness of concepts arising
from human perception and cognition processes (enabling to
formally model, e.g., concepts as ’tall’, ’cheap’, ’easy’, etc.).

Despite the success of ontologies, classical ontology lan-
guages are not appropriate to deal with imperfect knowledge

[1], recently appearing several tools intended to complement
this type of technology to support fuzzy and/or probabilistic
knowledge representation and reasoning.

Within this vast world of Knowledge Management, Se-
mantic Web and uncertainty support, the work presented in
this paper focuses on adding fuzzy logic capabilities to DL-
Learner [2], an already developed ontology-based Inductive
Logic Programming (ILP) framework. The goal of DL-
Learner is to provide a DL/OWL-based machine learning
tool to solve supervised learning tasks, extending ILP to DL,
OWL and the Semantic Web. The resulting tool integrates
several third-party developments in order to be able to
reason over fuzzy ontologies describing vague concepts,
addressing previous works in DL-based ILP –e.g., [3]– from
the perspective of Semantic Web standards and general
purpose semantic tools. A complete fuzzy ontology test case,
to validate this and future fuzzy ILP developments, is also
presented.

The remainder of this paper is organized as follows. Next
Section depicts the state of the art in tools for representing
and reasoning over fuzzy ontologies. The particularities of
each new component used to support the fuzzy extension
of DL-Learner are detailed in Section III. The fuzzy ILP
test case developed to validate this fuzzy extension of
DL-Learner is presented in Section IV along with some
experiments and results (Section V). Finally, Section VI
offers some conclusions and future works.

II. BACKGROUND

This section summarizes the state of the art in tools for
fuzzy ontologies representation and reasoning. It concludes
with an analysis and selection of the fuzzy tools finally used
to extend DL-Learner.

A. Representing Fuzziness In Ontologies

Formalisms regarding fuzzy ontologies were introduced to
represent semantic knowledge based on vague concepts and
relations (e.g., [4]). Several approaches have emerged trying
to implement those formalisms into OWL-based ontologies.

Some approaches focus on developing specific OWL on-
tologies formally defining the common elements of fuzzy set

theory to be later populated with instances representing the
fuzzy axioms and elements of a particular domain ontology.
A simple ontology was developed in [1] to demonstrate some
basic functionality of exchanging uncertain information (not
only for annotating vagueness), but it is still not mature
enough to be applied to model real domains. In [5] an
OWL ontology to extend relational databases with fuzzy
information is proposed, but it only defines concepts based
on the relational model thus lacking several expressions
available in DL-based ontologies; besides, the ontology is
not focused in solving reasoning problems but to act as
interface to access fuzzy information stored in relational
databases. FuzzyOWL2Ontology [6], a meta-ontology to
represent fuzzy extensions of some OWL languages, is
a further development in this line. Specific parsers can
be developed translating fuzzy ontologies represented with
FuzzyOWL2Ontology into the particular language used by a
fuzzy DL reasoner.

Extending the OWL language to support fuzzy definitions
is another strategy for building fuzzy ontologies. While some
approaches propose extending the standard building blocks
of the OWL language (e.g., [7]), others use the current OWL
standard tools to represent such fuzzy information. As far
as we are concerned, the work on FuzzyOWL2 [8] is the
most notable effort in this area. It uses OWL 2 annotation
properties to encode fuzziness. The use of annotation proper-
ties makes fuzzy ontologies compatible with current OWL
2 management tools (editors, programmatic environments,
etc.) and enable crisp OWL-based reasoners to compute
inferences over this kind of ontologies discarding the fuzzy
elements. FuzzyOWL2 also offers a general Java parser as
a base for building specific parsers for translating from
FuzzyOWL2 syntax to the syntax of any fuzzy DL reasoner.

B. Reasoning Over Fuzzy Ontologies

Although there exist several software tools for com-
putationally managing fuzzy concepts (e.g., jFuzzyLogic
or FuzzyJToolkit for general-purpose programming; Fuzzy-
Clips or FuzzyJess for handling fuzzy rule-based systems),
only a few of them supporting DL-based reasoning can be
found in the literature: FiRE1, GURDL [9], GERDS[10],
Yadlr2 and fuzzyDL [11]. Most of them are outdated or not
publicly available.

It is also worth mentioning those works developing reduc-
tion procedures translating fuzzy ontologies into its standard
DLs equivalent, being then able to apply standard DLs
reasoners for reasoning over them (notice that this kind
of approaches have to consider a finite number of differ-
ent membership degrees). DeLorean3 combines a reduction
procedure with a crisp DL reasoner (e.g., Pellet) to reason
over the resulting ontology.

1http://www.image.ece.ntua.gr/∼nsimou/FiRE/
2http://yadlr.sourceforge.net/
3http://webdiis.unizar.es/∼fbobillo/delorean

C. Selection Of External Fuzzy Semantic Tools

As first step for extending DL-Learner we had to choose
(i) a way for defining and managing fuzzy DL ontologies
and (ii) a fuzzy DL reasoner to reason over them.

Regarding the formalism to represent fuzzy ontologies,
each of the approaches previously presented has its ad-
vantages and disadvantages. Populating specific ontologies
representing fuzzy concepts may maintain the semantics
even when modelling the new fuzzy concepts, but the re-
sulting ontologies are less human-understandable. Extending
the building blocks of the semantic languages preserves
semantics but none the available extensions is expected to
be proposed as W3C standard in the near future [6]. On
the other hand, although adding fuzzy concepts using the
standard tools of the ontology languages (comments, anno-
tations, etc.) provides a semantic-less way of representing
fuzzy information, these approaches are highly compatibil-
ity with standard ontological tools (editors, programmatic
environments, etc.), since these can simply ignore the fuzzy
information encoded. Since reasoners often use their own
languages, we also require an approach compatible with the
fuzzy reasoners syntax or, at least, offering a straightforward
way to be translated to it. FuzzyOWL2Ontology and Fuzzy-
OWL2 are the only mechanisms we are aware of, which
satisfy those criteria. We finally selected FuzzyOWL2 as it
is a currently active project.

With regard to the selection of a fuzzy reasoner, the
first parameter to consider has been its availability. Only
3 out of 6 fuzzy reasoners presented above are publicly
available: FiRE, Yadlr and fuzzyDL. The fact that Yadlr
does not offer a Java API focused attention in the other
two reasoners, as a Java-based interface would simplify
reasoner integration. While FiRE allows the use of some DLs
constructs which fuzzyDL does not support (e.g., cardinality
restrictions), fuzzyDL covers other interesting features (e.g.,
fuzzy concepts modifiers, fuzzy data types) [11]. Finally,
taking into account that fuzzyDL seems to be the only
actively developed reasoner (last bug was fixed in March
2011), it was finally selected to be integrated in DL-Learner.

III. EXTENDING DL-LEARNER TO SUPPORT FUZZY
CONCEPT MANAGEMENT

To be flexible and easily extensible, DL-Learner uses
a component-based model with four different types of
components: knowledge source, reasoning service, learning
problem, and learning algorithm. Although some parts of
other already existing components were reused, four new
components had to be designed and developed in order to
extend DL-Learner with fuzzy logic capabilities. Figure 1
depicts the general components diagram of the resulting
DL-Learner fuzzy extension. Particularities of each new
component are detailed next.

Figure 1. DL-Learner fuzzy extension general components diagram.

A. Fuzzy Knowledge Source Component

The DL-Learner component managing crisp OWL on-
tologies as input for the reasoning processes had to be
updated in order to be able to manage fuzzy ontologies.
This task was easily accomplished as it was decided to
encode the fuzzy ontologies using FuzzyOWL2. It is worth
remembering that FuzzyOWL2 uses annotation properties to
encode fuzzy ontologies, maintaining the original OWL 2
format and being then fully compatible with current OWL
2 management tools (review Section II-A for more details).
DL-Learner already has support for OWL 2 ontologies (it
uses OWLAPI).

This component had to be extended in order to host
the processes for parsing FuzzyOWL2 ontologies into the
particular ontology format used by fuzzyDL reasoner. This
task was achieved by adapting an already developed parser4.

B. Fuzzy Reasoning Service Component

DL-Learner operation is supported by configuring external
general-purpose ontology reasoners (e.g., Pellet, HermiT,
etc.). The services these reasoners offer are mainly used
in DL-Learner (i) to generate candidate concepts (class
expressions) that may solve the ILP problem (see Section
III-D) and (ii) to calculate the quality of each of those
candidate concepts for a specific set of examples (see
Section III-C). For this new DL-Learner extension, a new
reasoning service component had to be developed in order
to be able to reason over fuzzy ontologies. The fuzzyDL
reasoner was encapsulated into an OWLAPI interface, in
which some reasoning methods are performed by a crisp
OWLAPI compatible reasoner and fuzziness-specific meth-
ods are performed by the fuzzy reasoner.

Instance checks, i.e., testing whether an individual is
instance of a class, is, as in many ILP algorithms, a common
reasoner call in most DL-Learner algorithms. This is a ’true
or false’ operation when applied to crisp ontologies but a

4http://gaia.isti.cnr.it/∼straccia/software/FuzzyOWL

degree value one (from 0 to 1) when dealing with fuzzy
ontologies. In this new fuzzy component, instance checks are
performed using fuzzyDL’s minInstance query. It determines
the minimal degree to which individual a is an instance of
concept C (being K the background knowledge base) [11]:

minInstance (K, a, C) = inf {m | K |= 〈a : C,m〉} (1)

C. Fuzzy Learning Problem Component

This new component was designed so DL-Learner could
manage fuzzy examples. Within this new component, each
example e is now composed of an URI a and a truth degree
value d representing the desired class membership regarding
the class expressions obtained as solution of the ILP problem
(e = (a, d)). This new learning problem was developed
generalizing a previous one only using positive and negative
examples. Crisp positive and negative examples can now be
represented as e = (a, 1) and e = (a, 0), respectively.

From the extensive number of performance measures for
classification in machine learning, DL-Learner has been
extended with the fuzzy version of predictive accuracy and
F-measure.
• Fuzzy predictive accuracy (fpa) is obtained using the

fuzzy reasoning service component (minInstance) and repre-
sents the membership degree of the complete set of examples
E = {e1, e2, . . . , eN} regarding a particular concept C.
Considering N as the total number of examples, the fuzzy
predictive accuracy is calculated as:

fpa′ (K, C, e) = 1− |d−minInstance(K, a, C)| (2)

fpa (K, C,E) =
1

N

∑
∀i

fpa′ (K, C, ei) (3)

Given a particular concept C and a background knowledge
base K, fpa′ (2) is the distance between the desired and
actual truth degree for a particular individual a; fpa (3) is
the average of this value for all examples E.
• F-measure is derived from precision and recall. In crisp

classification, the terms true positives (tp), true negatives
(tn), false positives (fp) and false negatives (fn) are used to
compare the given classification of a given example, being
Precision = tp/(tp + fp) and Recall = tp/(tp + fn).
According to previous equations, in fuzzy classification an
example is no longer positive or negative but a degree
ranging between 0 (totally negative example) and 1 (totally
positive example). This range is determined by the example
truth degree d. Similarly, fuzzy classification for a particular
example e regarding a particular concept C is no longer
totally true or false but, again, a degree between 0 (C does
not cover e at all) and 1 (C totally covers e) that can be
determined by fpa′ (2). Then, based on previous works on
fuzzy information retrieval, e.g., [12], precision and recall
metrics can be expressed for the fuzzy ILP problem as:

fRecall(K, C,E) =

∑
∀i di · fpa′ (K, C, ei)∑

∀i di
(4)

fPrecision(K, C,E) =

=

∑
∀i

di·fpa′(K,C,ei)∑
∀i

di·fpa′(K,C,ei)+
∑

∀i
(1−di)·(1−fpa′(K,C,ei))

(5)

Then, fuzzy F-measure can be expressed as the harmonic
mean of fuzzy precision and fuzzy recall as:

fF−measure =
2 · fPrecision · fRecall

fPrecision+ fRecall
(6)

Furthermore, this learning problem can be configured
with a noise factor n (fuzzy predictive accuracy becomes
fpa (K, C,E, n)), i.e., a tolerance degree when discarding
concepts not totally covering the set of examples. The noise
factor can range between 0 and 1. A value of n = 0
(i.e., no noise) would discard those concepts not covering
completely (with accuracy 100%) the set of examples. On
the other hand, a value of n = 1 (i.e., maximum noise)
would accept concepts even not covering at all any of the
examples defined.

Figure 2 offers an overview of the fuzzy learning problem
implementation, showing how fuzzy predictive accuracy and
noise factor concepts are managed.

Input: K, C,E = {e1, e2, . . . , eN}, n
1: s←

∑
∀i di; t← s; z ← 0

2: for all E = {e1, e2, . . . , eN} do
3: m← 1− |di −minInstance (K, ai, C) |
4: s← s− di
5: if [z + (m · di) + s] < [(1− n) · t] then
6: return C too weak
7: end if
8: z ← z + (m · di)
9: g ← g +m

10: end for
11: return g/N
Output: fpa (K, C,E, n) or too weak

Figure 2. DL-Learner fuzzy learning problem main algorithm.

D. Fuzzy Learning Algorithm Component

In DL-Learner, learning algorithm components are in
charge of generating the candidate concepts (class expres-
sions) that may solve the ILP problem. They may use the
reasoning component services in order to obtain these candi-
date concepts. Several learning algorithms are implemented
in DL-Learner. However, most algorithms use refinement
operators, which have been analysed in [13]. Based on this
analysis, several learning algorithms for ALC have been
developed in [14] and later extended to more expressive
Description Logics and adapted to the ontology engineering
use case in [15]. The latter algorithm, called CELOE (Class
Expression Learning for Ontology Engineering), was mainly
used in our experiments. However, since the new fuzzy
reasoning service component (see Section III-B) has been
designed fulfilling (and extending) the OWLAPI interface,
most other learning algorithms can in principle be used

as well with only some changes to the heuristics of those
algorithms required in order to adapt them to the fuzzy
domain.

IV. SEMANTIC FUZZY ILP TEST CASE DEVELOPMENT

In the machine learning literature there exist several
well-known examples defining simple ILP problems to be
solved. Michalski’s train problem [16] is one of the most
famous. It was invented around 20 years ago and proposes
finding a common pattern in a group of trains (and their
carriages). The solution must involve several concepts, e.g.,
size, number, position, contents and type of carriages. This
is a standard problem which has been used to test and
demonstrate many machine learning ILP implementations.
However, there is a lack of such test cases for fuzzy ILP
reasoners (like the one in [3]).

A. Semantic Fuzzy Trains Problem Design

A fuzzy and OWL-based version of Michalski’s train
problem has been designed in order to be used for testing
general-purpose fuzzy ILP reasoners.

The fuzzy trains ontology design starts from defining a
crisp ontology to be later ’fuzzified’ (see Figure 3). In this
ontology, each locomotive (Train) can have several carriages
(Car) attached (hasCar). The order of the locomotive and
the carriages is also stated (isInFrontOf). Each carriage
has a certain length (hasLength) and may have some load
(hasLoad). This load can have several shapes. Currently,
triangular (Triangle) and square (Square) shapes are con-
sidered. Finally, there may exist three types of carriages
depending on its length (ShortCar, MediumCar, LongCar).
This crisp ontology is extended with fuzzy concepts by

Figure 3. fuzzyTrains ontology design.

adding FuzzyOWL2 annotations. Up to now, the semantic
fuzzy trains ontology considers three kinds of ’fuzzification’:

1) Fuzzy classes definition: ShortCar, MediumCar and
LongCar classes become fuzzy classes when they are de-
fined using the fuzzy datatypes fuzzyShortCar, fuzzyMedium-
Car and fuzzyLongCar respectively. These fuzzy datatypes
are defined using the fuzzy number functions trapezoidal,
triangular, left-shoulder and right-shoulder as specified in
[17]. As an example, Figure 4 depicts the ShortCar fuzzy
class definition.

2) Fuzzy concept assertion: Any individual a can be-
long to the Train, Car, Triangle or Square classes C with a
certain truth degree d : [0, 1]. The closer this degree is to 1,

the more ’similar’ to a perfect locomotive, carriage, triangle
or square, respectively.

fuzzyShortCar(x) = leftShoulder(10, 15)

<rdfs:Datatype rdf:about="fuzzyShortCar">
<fuzzyOwl2 fuzzyType="datatype">
<Datatype type="leftshoulder" a="10" b="15" />

</fuzzyOwl2>
</rdfs:Datatype>

ShortCar ≡ Car u (∃hasCarLength.fuzzyShortCar)

<owl:Class rdf:about="ShortCar">
<rdfs:subClassOf rdf:resource="Car"/>
<owl:equivalentClass>

<owl:Restriction>
<owl:onProperty rdf:resource="hasCarLength"/>
<owl:someValuesFrom rdf:resource="fuzzyShortCar"/>

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>

Figure 4. Example of fuzzy class definition (ShortCar).

3) Fuzzy role assertion: Relations between individuals
can also have a truth degree value. This is the case for the
load in carriages. The degree of hasLoad relation between
a carriage and its load can range from 0 (falling off the car)
to 1 (firmly fixed to the floor of the carriage).

An specific instantiation of the described design has been
developed to verify the fuzzy learning capabilities of this
new fuzzy extension of DL-Learner (see Figure 5). We have
decided to make this contribution publicly available5 to be
used as a common test case for testing this kind of reasoners.

Figure 5. fuzzyTrains ontology development.

V. EXPERIMENTS AND RESULTS

A. Comparing DL-Learner Fuzzy and Crisp Behavior

As previously mentioned, classical logic is covered by
fuzzy logic as a special case where membership functions
only take crisp values. So, in order to partially validate this
new fuzzy version of DL-Learner, we first used it to solve
a crisp ILP problem. A crisp version of the fuzzyTrains

5http://dl-learner.org/Projects/DLLearner/fuzzyTrains

ontology was developed5 to compare the solutions obtained
by (i) DL-Learner configured to solve a crisp ILP problem
and (ii) DL-Learner configured with the fuzzy components
previously presented. Indeed, exactly the same solutions
were obtained by both configurations. The only difference
between them is the execution time (to be discussed at the
end of the Section).

B. Fuzzy Trains Test Case Output and Performance

Table I shows some solutions to the particular ILP prob-
lems obtained defining east trains as positive examples and
west trains as negatives (east column) or vice-versa (west
column).

In the east case, after visiting 706 nodes during reduc-
tion, the following expression describing eastbound trains is
discovered (in Manchester OWL syntax): ’isInFrontOf only
(LongCar and hasLoad some Triangle)’. The accuracy is
85% and not 100% as (i) car11 is just considered to be
LongCar at 40% according to the fuzzy data types definition
and (ii) although car31 is also inFrontOf a Train, its load
is almost falling off the carriage (’car31 hasLoad load31a
[0.1]’) and is not a perfect triangle (only 40%).

Similarly, in the west case, after visiting 3623 nodes, the
following expression is obtained: ’hasCar some (ShortCar
and hasLoad some Rectangle)’. In this case, accuracy is 90%
and not 100% as car22 is just considered to be ShortCar at
60% according to fuzzy data types definition and its load,
load22a, is not a perfect rectangle (only 80%).

Table I
DL-LEARNER FUZZY ILP PROBLEM SOLUTIONS

east west

time 1,369s (10,000 concepts) 1,325s (10,000 concepts)

accuracy 85% (fMeasure 82.35%) 90% (fMeasure 90.91%)

solution ∀isInFrontOf.(LongCaru
∃hasLoad.Triangle)

∃hasCar.(ShortCaru
∃hasLoad.Rectangle)

It has to be noted that there exist other solutions also
valid for this particular ILP problem; Table I solutions are
presented here as they involve several of the fuzzy axioms
defined in the test case. Future updates should develop more
comprehensive examples (e.g., just crisp examples were
defined in the presented results, etc.).

Although the new fuzzy capabilities of DL-Learner have
been validated from a functional perspective, it is important
to remark that fuzzy reasoner execution times improvement
is still an open issue [18] (fuzzyDL requires around 27.88
ms. to answer a minInstance query while, e.g., Pellet only
employs around 0.997 ms. for solving an entailment). In
this sense, it has to be pointed out that DL-Learner’s fuzzy
reasoning service component has been designed fulfilling
(and extending) the OWLAPI interface, being ready to host
any other kind of fuzzy reasoner offering this kind of
interface with only minimal adaption effort required.

VI. CONCLUSIONS AND FUTURE WORK

Despite the considerable research carried out towards
extending standard ontology languages to support vague
concept representation, current approaches have not been
sufficiently applied to solve real world problems. The work
presented in this paper represents a first step towards apply-
ing fuzzy OWL ontologies representation and reasoning to
solve Inductive Logic Programming (ILP) problems. After
reviewing the state of the art on these technologies, some
of the most up-to-date fuzzy ontology tools were used to
extend an already developed ontology-based ILP framework
in order to be able to manage vague concepts. The resulting
tool has been validated using a fuzzy ontology test case, also
presented in this paper.

This work should be considered just as a first step for
further development: more test cases should be implemented
aiming at exploiting every new fuzzy feature of DL-Learner
and applying DL-Learner to solve real world problems (e.g.,
we are thinking about developing a shop assistant based on
fuzzy information regarding items purchased by a user). We
are also collaborating with the developers of fuzzyDL as the
current version is not fast enough to be applied to solve
many real world problems; during the DL-Learner project,
we already achieved significant improvements in this area.
We also miss some functionality, e.g., cardinality restriction
support [19].

What should be stressed, however, is that this fuzzy
extension of DL-Learner has been developed following a
component-based approach, being actually quite easy to
update and extend.

ACKNOWLEDGMENTS

This work has been supported by the Spanish Ministry
for Science and Innovation (grant TIN2008-06742-C02-01).
Josué Iglesias also acknowledges this Ministry for his grant
and the support received by every member of AKSW group.

REFERENCES

[1] K. J. Laskey, K. B. Laskey, P. C. G. Costa, M. M. Kokar,
T. Martin, and T. Lukasiewicz, “W3C Incubator Group on
Uncertainty Reasoning for the World Wide Web. Final Re-
port,” 2008.

[2] J. Lehmann, “DL-Learner: learning concepts in description
logics,” Journal of Machine Learning Research (JMLR),
vol. 10, pp. 2639–2642, 2009.

[3] S. Konstantopoulos and A. Charalambidis, “Formulating de-
scription logic learning as an inductive logic programming
task,” in Proc. of FUZZ-IEEE, 2010 IEEE World Congress
on Comp. Int., July 18–23, Barcelona. IEEE, Jul. 2010.

[4] U. Straccia, “A Fuzzy Description Logic for the Semantic
Web,” in Fuzzy logic and the Semantic Web, Capturing Int.,
Chapter 4. Elsevier, 2005, pp. 167–181.

[5] I. J. Blanco, M. A. Vila, and C. Martinez-Cruz, “The use
of ontologies for representing database schemas of fuzzy
information,” Int. J. Intell. Syst., vol. 23, pp. 419–445, 2008.

[6] F. Bobillo and U. Straccia, “An OWL Ontology for Fuzzy
OWL 2,” in Proc. of 18th Int. Symp. on Foundations of Int.
Systems, ser. ISMIS ’09, 2009, pp. 151–160.

[7] G. Stoilos, G. Stamou, and J. Z. Pan, “Fuzzy extensions of
OWL: Logical properties and reduction to fuzzy description
logics,” Int. J. Approx. Reas., vol. 51, pp. 656–679, July 2010.

[8] F. Bobillo and U. Straccia, “Fuzzy ontology representation
using OWL 2,” International Journal of Approximate Rea-
soning, vol. 52, no. 7, pp. 1073 – 1094, 2011.

[9] H.-I. P. Volker Haarslev and N. Shiri, “Optimizing Tableau
Reasoning in ALC Extended with Uncertainty,” in In Proc.
of Description Logics, 2007.

[10] H. Habiballa, “Resolution Strategies for Fuzzy Description
Logic,” in European Society for Fuzzy Logic and Technology,
2007, pp. 27–36.

[11] F. Bobillo and U. Straccia, “fuzzyDL: An expressive fuzzy
description logic reasoner,” in Fuzzy Systems, 2008. FUZZ-
IEEE 2008. (IEEE World Congress on Comp. Int.). IEEE Int.
Conf. on, june 2008, pp. 923 –930.

[12] V. Cross, “Fuzzy information retrieval,” Journal of Intelligent
Information Systems, vol. 3, pp. 29–56, 1994.

[13] J. Lehmann and P. Hitzler, “Foundations of refinement oper-
ators for description logics,” in Proc. of 17th Int. Conf. on
Inductive Logic Programming, vol. 4894. Springer, 2007,
pp. 161–174.

[14] ——, “A refinement operator based learning algorithm for
the ALC description logic,” in Proc. of 17th Int. Conf. on
Inductive Logic Programming, vol. 4894. Springer, 2007.

[15] J. Lehmann, S. Auer, L. Bühmann, and S. Tramp, “Class
expression learning for ontology engineering,” Journal of Web
Semantics, vol. 9, pp. 71 – 81, 2011.

[16] J. Larson and R. S. Michalski, “Inductive inference of VL
decision rules,” SIGART Bull., pp. 38–44, June 1977.

[17] D. Dubois and H. Prade, “Operations on fuzzy numbers,” Int.
Journal of Systems Science, vol. 9, pp. 613–626, 1978.

[18] N. Simou, T. P. Mailis, G. Stoilos, and G. B. Stamou,
“Optimization techniques for fuzzy description logics.” in
Description Logics’10, 2010, pp. –1–1.

[19] H. Wang, Z. M. Ma, and J. Yin, “FRESG: A Kind of Fuzzy
Description Logic Reasoner,” in Proc. of 20th Int. Conf. on
Database and Expert Systems Applications, ser. DEXA ’09.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 443–450.

