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Abstract

While the number of knowledge bases in the Semantic Web increases, the main-
tenance and creation of ontology schemata still remain a challenge. In particular
creating class expressions constitutes one of the more demanding aspects of ontol-
ogy engineering. In this article we describe how to adapt a semi-automatic method
for learning OWL class expressions to the ontology engineering use case. Specifically,
we describe how to extend an existing learning algorithm for the class learning prob-
lem. We perform rigorous performance optimization of the underlying algorithms
for providing instant suggestions to the user. We also present two plugins, which use
the algorithm, for the popular Protégé and OntoWiki ontology editors and provide
a preliminary evaluation on real ontologies.
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1 Introduction and Motivation

The Semantic Web has recently seen a rise in the availability and usage of
knowledge bases, as can be observed within the Linking Open Data Initiative,
the TONES and Protégé ontology repositories, or the Watson search engine.
Despite this growth, there is still a lack of knowledge bases that consist of
sophisticated schema information and instance data adhering to this schema.
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Several knowledge bases, e.g. in the life sciences, only consist of schema in-
formation, while others are, to a large extent, a collection of facts without
a clear structure, e.g. information extracted from data bases or texts. The
combination of sophisticated schema and instance data allows powerful rea-
soning, consistency checking, and improved querying possibilities. We argue
that being able to learn OWL class expressions 1 is a step towards achieving
this goal.

Example 1 As an example, consider a knowledge base containing a class
Capital and instances of this class, e.g. London, Paris, Washington, Can-
berra etc. A machine learning algorithm could, then, suggest that the class
Capital may be equivalent to one of the following OWL class expressions in
Manchester OWL syntax 2 :

City and isCapitalOf at least one GeopoliticalRegion

City and isCapitalOf at least one Country

Both suggestions could be plausible: The first one is more general and includes
cities that are capitals of states, whereas the latter one is stricter and limits the
instances to capitals of countries. A knowledge engineer can decide which one
is more appropriate, i.e. a semi-automatic approach is used, and the machine
learning algorithm should guide her by pointing out which one fits the existing
instances better. Assuming the knowledge engineer decides for the latter, an
algorithm can show her whether there are instances of the class Capital which
are neither instances of City nor related via the property isCapitalOf to an
instance of Country. 3 The knowledge engineer can then continue to look
at those instances and assign them to a different class as well as provide
more complete information; thus improving the quality of the knowledge base.
After adding the definition of Capital, an OWL reasoner can compute further
instances of the class which have not been explicitly assigned before.

We argue that the approach and plugins presented here are the first ones to be
practically usable by knowledge engineers for learning class expressions. Using
machine learning for the generation of suggestions instead of entering them
manually has the advantage that 1.) the given suggestions fit the instance data,
i.e. schema and instances are developed in concordance, and 2.) the entrance
barrier for knowledge engineers is significantly lower, since understanding an
OWL class expression is easier than analysing the structure of the knowledge
base and creating a class expression manually. Disadvantages of the approach
are the dependency on the availability of instance data in the knowledge base
and requirements on the quality of the ontology, i.e. modelling errors in the
ontology can reduce the quality of results.

1 http://www.w3.org/TR/owl2-syntax/#Class_Expressions
2 For details on Manchester OWL syntax (e.g. used in Protégé, OntoWiki) see [18].
3 This is not an inconsistency under the standard OWL open world assumption,
but rather a hint towards a potential modelling error.
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Overall, we make the following contributions:

• extension of an existing learning algorithm for learning class expressions to
the ontology engineering scenario,
• evaluation of five different heuristics,
• rigorous performance improvements including an instance check method for

class expression learning and a stochastic coverage approximation method,
• showcase how the enhanced ontology engineering process can be supported

with plugins for Protégé and OntoWiki,
• evaluation with several real ontologies from various domains.

The adapted algorithm for solving the learning problems, which occur in the
ontology engineering process, is called CELOE (Class Expression Learning
for Ontology Engineering). We have implemented the algorithm within the
open-source framework DL-Learner. 4 DL-Learner [22,23] leverages a modular
architecture, which allows to define different types of components: knowledge
sources (e.g. OWL files), reasoners (e.g. DIG 5 or OWL API based), learn-
ing problems, and learning algorithms. In this article we focus on the latter
two component types, i.e. we define the class expression learning problem in
ontology engineering and provide an algorithm for solving it.

The paper is structured as follows: Section 2 covers basic notions and Sec-
tion 3 describes a heuristic for class expression learning in ontology engineer-
ing. Thereafter, Section 4 shows how this heuristic can be computed efficiently.
Section 5 briefly explains changes compared to previous algorithms. We then
describe the implemented plugins in Section 6 and 7 for Protégé and OntoWiki,
respectively. The algorithm is evaluated in Section 8. Finally, in Section 9 and
10 we conclude with related and future work.

2 Preliminaries

For an introduction to OWL and description logics, we refer to [4] and [17].

2.1 Learning Problem

The process of learning in logics, i.e. trying to find high-level explanations
for given data, is also called inductive reasoning as opposed to inference or
deductive reasoning. The main difference is that in deductive reasoning it is
formally shown whether a statement follows from a knowledge base, whereas
in inductive learning new statements are invented. Learning problems, which

4 http://dl-learner.org
5 http://dl.kr.org/dig/
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are similar to the one we will analyse, have been investigated in Inductive
Logic Programming [29] and, in fact, the method presented here can be used
to solve a variety of machine learning tasks apart from ontology engineering.

In the ontology learning problem we consider, we want to learn a formal de-
scription of a class A, which has (inferred or asserted) instances in the consid-
ered ontology. In the case that A is already described by a class expression C
via axioms of the form A v C or A ≡ C, those can be either refined, i.e. spe-
cialised/generalised, or relearned from scratch by the learning algorithm. To
define the class learning problem, we need the notion of a retrieval reasoner
operation RK(C). RK(C) returns the set of all instances of C in a knowledge
base K. If K is clear from the context, the subscript can be ommitted.

Definition 1 (class learning problem) Let an existing named class A in a
knowledge base K be given. The class learning problem is to find an expression
C such that RK(C) = RK(A).

Clearly, the learned expression C is a description of (the instances of) A.
Such an expression is a candidate for adding an axiom of the form A ≡ C
or A v C to the knowledge base K. If a solution of the learning problem
exists, then the used base learning algorithm (as presented in the following
subsection) is complete, i.e. guaranteed to find a correct solution if one exists
in the target language and there are no time and memory constraints (see
[25,26] for the proof). In most cases, we will not find a solution to the learning
problem, but rather an approximation. This is natural, since a knowledge
base may contain false class assignments or some objects in the knowledge
base are described at different levels of detail. For instance, in Example 1,
the city “Apia” might be typed as “Capital” in a knowledge base, but not
related to the country “Samoa”. However, if most of the other cities are related
to countries via a role isCapitalOf, then the learning algorithm may still
suggest City and isCapitalOf at least one Country since this describes
the majority of capitals in the knowledge base well. If the knowledge engineer
agrees with such a definition, then a tool can assist him in completing missing
information about some capitals.

By Occam’s razor [8] simple solutions of the learning problem are to be pre-
ferred over more complex ones, because they are more readable. This is even
more important in the ontology engineering context, where it is essential to
suggest simple expressions to the knowledge engineer. We measure simplic-
ity as the length of an expression, which is defined in a straightforward way,
namely as the sum of the numbers of concept, role, quantifier, and connective
symbols occurring in the expression. The algorithm is biased towards shorter
expressions. Also note that, for simplicity the definition of the learning prob-
lem itself does enforce coverage, but not prediction, i.e. correct classification
of objects which are added to the knowledge base in the future. Concepts with
high coverage and poor prediction are said to overfit the data. However, due
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to the strong bias towards short expressions this problem occurs empirically
rare in description logics [26].

2.2 Base Learning Algorithm

Figure 1. Outline of
the general learning ap-
proach in CELOE: One
part of the algorithm
is the generation of
promising class expres-
sions taking the avail-
able background knowl-
edge into account. An-
other part is a heuris-
tic measure of how close
an expression is to be-
ing a solution of the
learning problem. Fig-
ure adapted from [16].

Figure 1 gives a brief overview of our algorithm CELOE, which follows the
common “generate and test“ approach in ILP. This means that learning is
seen as a search process and several class expressions are generated and tested
against a background knowledge base. Each of those class expressions is eval-
uated using a heuristic, which is described in the next section. A challenging
part of a learning algorithm is to decide which expressions to test. In par-
ticular, such a decision should take the computed heuristic values and the
structure of the background knowledge into account. For CELOE, we use the
approach described in [25,26] as base, where this problem has already been
analysed, implemented, and evaluated in depth. It is based on the idea of
refinement operators :

Definition 2 (refinement operator) A quasi-ordering is a reflexive and
transitive relation. In a quasi-ordered space (S,�) a downward (upward) re-
finement operator ρ is a mapping from S to 2S, such that for any C ∈ S we
have that C ′ ∈ ρ(C) implies C ′ � C (C � C ′). C ′ is called a specialisation
(generalisation) of C.

Refinement operators can be used for searching in the space of expressions. As
ordering we can use subsumption. (Note that the subsumption relation v is a
quasi-ordering.) If an expression C subsumes an expression D (D v C), then
C will cover all examples which are covered by D. This makes subsumption
a suitable order for searching in expressions as it allows to prune parts of the
search space without losing possible solutions.
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Figure 2. Illustration of a search tree in a top down refinement approach.

The approach we used is a top-down algorithm based on refinement operators
as illustrated in Figure 2. This means that the first class expression, which
will be tested is the most general expression (>), which is then mapped to a
set of more specific expressions by means of a downward refinement operator.
Naturally, the refinement operator can be applied to the obtained expressions
again, thereby spanning a search tree. The search tree can be pruned when an
expression does not cover sufficiently many instances of the class A we want to
describe. One example for a path in a search tree spanned up by a downward
refinement operator is the following ( denotes a refinement step):

> Person Person u takesPartinIn.>
 Person u takesPartIn.Meeting

The heart of such a learning strategy is to define a suitable refinement op-
erator and an appropriate search heuristics for deciding which nodes in the
search tree should be expanded. The refinement operator in the considered
algorithm is defined in [26]. It is based on earlier work in [25] which in turn
is build on theoretical foundations in [24]. It has been shown to be the best
achievable operator with respect to a set of properties (not further described
here), which are used to assess the performance of refinement operators. The
learning algorithm supports conjunction, disjunction, negation, existential and
universal quantifiers, cardinality restrictions, hasValue restrictions as well as
boolean and double datatypes.

3 Finding a Suitable Heuristic

A heuristic measures how well a given class expression fits a learning problem
and is used to guide the search in a learning process. To define a suitable
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heuristic, we first need to address the question of how to measure the accuracy
of a class expression. We introduce several heuristics, which can be used for
CELOE and later evaluate them.

We cannot simply use supervised learning from examples right-away, since we
do not have positive and negative examples available. We can try to tackle this
problem by using the existing instances of the class as positive examples and
the remaining instances as negative examples. This is illustrated in Figure 3,
where K stands for the knowledge base and A for the class to describe. We can
then measure accuracy as the number of correctly classified examples divided
by the number of all examples. This can be computed as follows for a class
expression C and is known as predictive accuracy in Machine Learning:

predacc(C) = 1− |R(A) \R(C)|+ |R(C) \R(A)|
n

n = |Ind(K)|

Here, Ind(K) stands for the set of individuals occurring in the knowledge base.
R(A)\R(C) are the false negatives whereas R(C)\R(A) are false positives. n
is the number of all examples, which is equal to the number of individuals in
the knowledge base in this case. Apart from learning definitions, we also want
to be able to learn super class axioms (A v C). Naturally, in this scenario
R(C) should be a superset of R(A). However, we still do want R(C) to be as
small as possible, otherwise > would always be a solution. To reflect this in our
accuracy computation, we penalise false negatives more than false positives
by a factor of t (t > 1) and map the result to the interval [0, 1]:

predacc(C, t) = 1− 2 · t · |R(A) \R(C)|+ |R(C) \R(A)|
(t+ 1) · n

n = |Ind(K)|

While being straightforward, the outlined approach of casting class learning
into a standard learning problem with positive and negative examples has
the disadvantage that the number of negative examples will usually be much
higher than the number of positive examples. As shown in Table 1, this may
lead to overly optimistic estimates. More importantly, this accuracy measure
has the drawback of having a dependency on the number of instances in the
knowledge base.

Therefore, we investigated further heuristics, which overcome this problem, in
particular by transferring common heuristics from information retrieval to the
class learning problem:

(1) F-Measure: Fβ-Measure is based on precision and recall weighted by β.
They can be computed for the class learning problem without having
negative examples. Instead, we perform a retrieval for the expression C,
which we want to evaluate. We can then define precision as the percentage
of instances of C, which are also instances of A and recall as percentage
of instances of A, which are also instances of C. This is visualised in
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Figure 3. F-Measure is defined as harmonic mean of precision and recall.
For learning super classes, we use F3 measure by default, which gives
recall a higher weight than precision.

(2) A-Measure: We denote the arithmetic mean of precision and recall as A-
Measure. Super class learning is achieved by assigning a higher weight to
recall. Using the arithmetic mean of precision and recall is uncommon in
Machine Learning, since it results in too optimistic estimates. However,
we found that it is useful in super class learning, where Fn is often too
pessimistic even for higher n.

(3) Generalised F-Measure: Generalised F-Measure has been published in [12]
and extends the idea of F-measure by taking the three valued nature of
classification in OWL/DLs into account: An individual can either belong
to a class, the negation of a class or none of both cases can be proven.
This differs from common binary classification tasks and, therefore, ap-
propriate measures have been introduced (see [12] for details). Adaption
for super class learning can be done in a similar fashion as for F-Measure
itself.

(4) Jaccard Distance: Since R(A) and R(C) are sets, we can use the well-
known Jaccard coefficient to measure the similarity between both sets.

Figure 3. Visualisation of different accuracy measurement approaches. K is the
knowledge base, A the class to describe and C a class expression to be tested. Left
side: Standard supervised approach based on using positive (instances of A) and
negative (remaining instances) examples. Here, the accuracy of C depends on the
number of individuals in the knowledge base. Right side: Evaluation based on two
criteria: recall (Which fraction of R(A) is in R(C)? ) and precision (Which fraction
of R(C) is in R(A)? ).

We argue that those four measures are more appropriate than predictive accu-
racy when applying standard learning algorithms to the ontology engineering
use case. Table 1 provides some example calculations, which allow the reader
to compare the different heuristics.

4 Efficient Heuristic Computation

Most of the runtime of a learning algorithm is spent for computing heuristic
values, since they require expensive reasoner requests. In particular, retrieval
operations are often required. Performing an instance retrieval can be very
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illustration pred. acc. F-Measure A-Measure Jaccard

eq sc eq sc eq sc

80% 67% 0% 0% 0% 0% 0%

90% 92% 67% 73% 75% 88% 50%

70% 75% 40% 48% 63% 82% 25%

98% 97% 90% 90% 90% 90% 82%

95% 88% 67% 61% 75% 63% 50%

Table 1
Example accuracies for selected cases (eq = equivalence class axiom, sc = super
class axiom). The images on the left represent an imaginary knowledge base K with
1000 individuals, where we want to describe the class A by using expression C. It
is apparent that using predictive accuracy leads to impractical accuracies, e.g. in
the first row C cannot possibly be a good description of A, but we still get 80%
accuracy, since all the negative examples outside of A and C are correctly classified.

expensive for large knowledge bases. Depending on the ontology schema, this
may require instance checks for many or even all objects in the knowledge base.
Furthermore, a machine learning algorithm easily needs to compute the score
for thousands of expressions due to the expressiveness of the target language
OWL. We provide three performance optimisations:

Reduction of Instance Checks The first optimisation is to reduce the
number of objects we are looking at by using background knowledge. Assuming
that we want to learn an equivalence axiom for class A with super class A′, we
can start a top-down search in our learning algorithm with A′ instead of >.
Thus, we know that each expression we test is a subclass of A′, which allows us
to restrict the retrieval operation to instances of A′. This can be generalised to
several super classes and a similar observation applies to learning super class
axioms.

Approximate and Closed World Reasoning The second optimisation
is to use a reasoner designed for performing a very high number of instance
checks against a knowledge base which can be considered static, i.e. we assume
it is not changed during the run of the algorithm. This is reasonable, since
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the algorithm runtimes are usually in the range of a few seconds. In CELOE,
we use an own approximate incomplete reasoning procedure for fast instance
checks (FIC) which partially follows a closed world assumption (CWA). First,
we use a standard OWL reasoner like Pellet to compute the instances of named
classes occurring in the learning process as well as the property relationships.
Afterwards, the FIC procedure can answer all instance checks (approximately)
by using only the inferred knowledge, which results in an order of magnitude
speedup compared to using a standard reasoner for instance checks as we will
show in Section 8. The second step, i.e. the instance checks from the inferred
knowledge in memory, follows a closed world assumption.

We briefly want to discuss why we are preferring the CWA over a straightfor-
ward use of a standard OWL reasoner. Note that this has been explained in [7]
already, but we repeat the argument here. Consider the following knowledge
base containing a person a with two male children a1 and a2:

K = {Male v Person,

OnlyMaleChildren(a),

Person(a), Male(a1), Male(a2),

hasChild(a, a1), hasChild(a, a2)}

Assume, we want to learn a description for the named class OnlyMaleChildren.
If we want to compute the score for expression C = Personu∀hasChild.Male,
describing persons with only male children, we need to check whether a is an
instance of C. It turns out that this is true under CWA and not true un-
der OWA. However, C is a good description of a and could be used to define
OnlyMaleChildren. For this reason, CWA is usually preferred in this Machine
Learning scenario. Otherwise, universal quantifiers and number restrictions
would hardly occur (unnegated) in suggestions for the knowledge engineer –
even if their use would be perfectly reasonable. In a broader view, the task
of the learning algorithm is to inspect the data actually present, whereas the
knowledge engineer can then decide whether these observations hold in gen-
eral.

Stochastic Coverage Computation The third optimisation is a further
reduction of necessary instance checks. Looking at the various heuristics in de-
tail, we can observe that |R(A)| needs to be computed only once, while other
expressions like |R(A) ∩ R(C)| (number of common instances of A and C)
or, particularly, |R(C)| are expensive to compute. However, since the heuris-
tic provides only a rough guidance for the learning algorithm, it is usually
sufficient to approximate it and, thus, to test more class expressions within
a certain time span. However, an all too inaccurate approximation can also
increase the number of expressions to test, since the algorithm is more likely
to consider less relevant areas of the search space.
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The approximation works by testing randomly drawn objects and terminating
when we are sufficiently confident that our estimation is within a δ-bound.
This can be done for all heuristics. As an example, we want to illustrate the
computation of F-Measure for the simple case that we approximate |R(C)|
(i.e. we do not consider the more involved case that |R(A)∩R(C)| should also
approximated in this example).

Using the equivalent expression |R(A)∩R(C)|+ |R(C)\R(A)| for |R(C)| and
replacing |R(C) \R(A)| with x in the formula for F-Measure, we get:

Fβ = (1 + β2) · precision · recall

β2 · precision + recall
(1)

= (1 + β2) ·
|R(A)∩R(C)|

|R(A)∩R(C)|+x ·
|R(A)∩R(C)|

|(R(A)|

β2 · |R(A)∩R(C)|
|R(A)∩R(C)|+x + |R(A)∩R(C)|

|(R(A)|

(2)

Given that |R(A)| and |R(A) ∩R(C)| are already known, we can look at this
as a function of x, where x is the number of instances of C which are not
instances of A. It is monotonically decreasing for positive values of x, because
lower values of x mean lower precision and, thus, lower F-Measure. We now
approximate x by drawing random individuals from the class A′ (explained in
the paragraph about reduction of instance checks). From those results, we can
compute a confidence interval efficiently by using the improved Wald method
defined in [2]. Assume that we have performed m instance checks where s of
them were successful (true), then the 95% confidence interval is as follows:

max(0, p′ − 1.96 ·
√
p′ · (1− p′)
m+ 4

) to min(1, p′ + 1.96 ·
√
p′ · (1− p′)
m+ 4

)

with p′ =
s+ 2

m+ 4
This formula is easy to compute and has been shown to be accurate in [2].
Let x1 and x2 be the lower and upper border of the confidence interval. We
draw instances of A until the interval is smaller than a configurable maximum
width δ:

δ ≥ Fβ(x1)− Fβ(x2)

Since Fβ(x) is monotonic, the difference Fβ(x1) − Fβ(x2) is the maximum
difference between two function values in the interval [x1, x2]. If this value is
smaller than δ, we can be confident that we are within a δ range of the real
value of Fβ. The choice of δ depends on the desired accuracy. For CELOE, we
use δ = 0.05, because of empirical studies (see also Table 4).

This method can be applied to most heuristics in a similar fashion. In some
cases, two variables, e.g. those estimating |R(A) ∩ R(C)| and |R(A)|, can be
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approximated within one heuristic, if it can be shown that the corresponding
δ range estimate is pessimistic. Intuitively, the reason is that it is unlikely that
both real values of the approximated variables are outside of their computed
confidence interval. Details and an approximation for other another heuris-
tic can be found in [23]. Note that it is usually not hard to show that the
approximation process always terminates.

Example 2 Assume we want to learn an equivalence axiom, i.e. β = 1, for a
class A, where A has 1,000 instances and the super classes of A, excluding A
itself, have 10,000 instances. We choose F-Measure as heuristic. Let C be an
expression to test and |R(A)∩R(C)| = 800. We use δ = 0, 05 as approximation
parameter.

We now start drawing random instances of super classes of A excluding A
itself, i.e. we pick amongst 10,000 individuals and perform instance checks.
Assume, we have checked 41 individuals out of which 31 were instances of
C. According to the Wald method, the 95% confidence interval multiplied by
10,000 ranges from x1 = 6049 to x2 = 8635. Thus, F1(x1) − F1(x2) = 0.0505
according to Equation 1. Since this value is larger than δ, we need to perform
another instance check. Assuming this instance check is positive, we get a new
95% confidence interval ranging from 6130 to 8669 and F1(x1)−F1(x2) is now
0.0489. At this point, the approximation process terminates and we obtain an
F1 score of 0.1699. To approximate the heuristic value, we have only checked
1 042 instead of 11 000 individuals.

In general, the performance gain through this method is higher for larger
knowledge bases (more specifically large Aboxes). There is, however, almost
no performance loss for smaller knowledge bases, because of the efficient Wald
method. It is noteworthy that the method has impact on a number of other
scenarios, where heuristic values need only be approximated. For instance, a
recent article [35] pointed out that most ILP methods do not scale to a high
number of examples. Using the technique introduced above, such problems
can indeed be handled.

5 Adaptation of the Learning Algorithm

While the major change compared to other supervised learning algorithms for
OWL is the previously described heuristic, we also made further modifications.
The goal of those changes is to adapt the learning algorithm to the ontology
engineering scenario: For example, the algorithm was modified in order to in-
troduce a strong bias towards short class expressions. This means that the
algorithm is less likely to produce long class expressions, but is almost guar-
anteed to find any suitable short expression. Clearly, the rationale behind this
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change is that knowledge engineers can understand short expressions better
than more complex ones and it is essential not to miss those.

We also introduced improvements to enhance the readability of suggestions:
Each suggestion is reduced, i.e. there is a guarantee that they are as succinct
as possible. For example, ∃hasLeader.> u Capital is reduced to Capital if
the background knowledge allows to infer that a capital is a city and each city
has a leader. This reduction algorithm uses the complete and sound Pellet
reasoner, i.e. it can take any possible complex relationships into account by
performing a series of subsumption checks between class expressions. A caching
mechanism is used to store the results of those checks, which allows to perform
the reduction very efficiently after a warm-up phase.

Furthermore, we also make sure that “redundant” suggestions are omitted. If
one suggestion is longer and subsumed by another suggestion and both have
the same characteristics, i.e. classify the relevant individuals equally, the more
specific suggestion is filtered. This avoids expressions containing irrelevant
subexpressions and ensures that the suggestions are sufficiently diverse.

6 The Protégé Plugin

After implementing and testing the described learning algorithm, we inte-
grated it into Protégé and OntoWiki. Together with the Protégé developers,
we extended the Protégé 4 plugin mechanism to be able to seamlessly integrate
the DL-Learner plugin as an additional method to create class expressions.
This means that the knowledge engineer can use the algorithm exactly where
it is needed without any additional configuration steps. The plugin has also
become part of the official Protégé 4 repository, i.e. it can be directly installed
from within Protégé.

A screenshot of the plugin is shown in Figure 4. To use the plugin, the knowl-
edge engineer is only required to press a button, which then starts a new
thread in the background. This thread executes the learning algorithm. The
used algorithm is an anytime algorithm, i.e. at each point in time we can al-
ways see the currently best suggestions. The GUI updates the suggestion list
each second until the maximum runtime – 10 seconds per default – is reached.
This means that the perceived runtime, i.e. the time after which only minor
updates occur in the suggestion list, is often only one or two seconds for small
ontologies. For each suggestion, the plugin displays its accuracy.

When clicking on a suggestion, it is visualized by displaying two circles: One
stands for the instances of the class to describe and another circle for the
instances of the suggested class expression. Ideally, both circles overlap com-
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Figure 4. A screenshot of
the DL-Learner Protégé
plugin. It is integrated
as additional tab to
create class expressions
in Protégé. The user is
only required to press the
“suggest equivalent class
expressions” button and
within a few seconds they
will be displayed ordered
by accuracy. If desired,
the knowledge engineer
can visualize the instances
of the expression to detect
potential problems. At the
bottom, optional expert
configuration settings can
be adopted.

pletely, but in practice this will often not be the case. Clicking on the plus
symbol in each circle shows its list of individuals. Those individuals are also
presented as points in the circles and moving the mouse over such a point
shows information about the respective individual. Red points show potential
problems, where it is important to note that we use a closed world assump-
tion to detect those. For instance, in our initial example in Section 1, a capital
which is not related via the property isCapitalOf to an instance of Country
is marked red. If there is not only a potential problem, but adding the ex-
pression would render the ontology inconsistent, the suggestion is marked red
and a warning message is displayed. Accepting such a suggestion can still be a
good choice, because the problem often lies elsewhere in the knowledge base,
but was not obvious before, since the ontology was not sufficiently expressive
for reasoners to detect it. This is illustrated by a screencast available from the
plugin homepage, 6 where the ontology becomes inconsistent after adding the
axiom, and the real source of the problem is fixed afterwards. Being able to
make such suggestions can be seen as a strength of the plugin.

The plugin allows the knowledge engineer to change expert settings. Those set-
tings include the maximum suggestion search time, the number of results re-
turned and settings related to the desired target language., e.g. the knowledge
engineer can choose to stay within the OWL 2 EL profile or enable/disable
certain class expression constructors. The learning algorithm is designed to be
able to handle noisy data and the visualisation of the suggestions will reveal
false class assignments so that they can be fixed afterwards.

6 http://dl-learner.org/wiki/ProtegePlugin
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7 The OntoWiki Plugin

Analogous to Protégé, we created a similar plugin for OntoWiki [3]. OntoWiki
is a lightweight ontology editor, which allows distributed and collaborative
editing of knowledge bases. It focuses on wiki-like, simple and intuitive au-
thoring of semantic content, e.g. through inline editing of RDF content, and
provides different views on instance data.

Figure 5. The DL-Learner plugin can be
invoked from the context menu of a class
in OntoWiki.

Recently, a fine-grained plugin
mechanism and extensions archi-
tecture was added to OntoWiki.
The DL-Learner plugin is techni-
cally realised by implementing an
OntoWiki component, which con-
tains the core functionality, and
a module, which implements the
UI embedding. The DL-Learner
plugin can be invoked from sev-
eral places in OntoWiki, for in-
stance through the context menu
of classes as shown in Figure 5.

The plugin accesses DL-Learner functionality through its WSDL-based web
service interface. Jar files containing all necessary libraries are provided by the
plugin. If a user invokes the plugin, it scans whether the web service is online
at its default address. If not, it is started automatically.

Figure 6. Extraction with three starting instances. The circles represent different
recursion depths. The circles around the starting instances signify recursion depth
0. The larger inner circle represents the fragment with recursion depth 1 and the
largest outer circle with recursion depth 2. Figure taken from [16].
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A major technical difference compared to the Protégé plugin is that the knowl-
edge base is accessed via SPARQL, since OntoWiki is a SPARQL-based web
application. In Protégé, the current state of the knowledge base is stored in
memory in a Java object. As a result, we cannot easily apply a reasoner on
an OntoWiki knowledge base. To overcome this problem, we use the DL-
Learner fragment selection mechanism described in [16]. Starting from a set
of instances, the mechanism extracts a relevant fragment from the underly-
ing knowledge base up to some specified recursion depth. Figure 6 provides
an overview of the fragment selection process. The fragment has the property
that learning results on it are similar to those on the complete knowledge base.
For a detailed description we refer the reader to the full article.

The fragment selection is only performed for medium to large-sized knowledge
bases. Small knowledge bases are retrieved completely and loaded into the
reasoner. While the fragment selection can cause a delay of several seconds
before the learning algorithm starts, it also offers flexibility and scalability.
For instance, we can learn class expressions in large knowledge bases such as
DBpedia in OntoWiki. 7

Figure 7. Screenshot of the result table of the DL-Learner plugin in OntoWiki.

Figure 7 shows a screenshot of the OntoWiki plugin applied to the SWORE [30]
ontology. Suggestions for learning the class “customer requirement” are shown
in Manchester OWL Syntax. Similar to the Protégé plugin, the user is pre-
sented a table of suggestions along with their accuracy value. Additional de-
tails about the instances of “customer requirement”, covered by a suggested
class expressions and additionally contained instances can be viewed via a tog-
gle button. The modular design of OntoWiki allows rich user interaction: Each

7 OntoWiki is undergoing an extensive development, aiming to support handling
such large knowledge bases. A release supporting this is expected for the first half
of 2012.
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resource, e.g. a class, property, or individual, can be viewed and subsequently
modified directly from the result table as shown for “design requirement” in
the screenshot. For instance, a knowledge engineer could decide to import
additional information available as Linked Data and run the CELOE algo-
rithm again to see whether different suggestions are provided with additional
background knowledge.

8 Evaluation

To evaluate the suggestions made by our learning algorithm, we tested it on
a variety of real world ontologies of different sizes and domains. Please note
that we intentionally do not perform an evaluation of the machine learning
technique as such on existing benchmarks, since we build on the base algo-
rithm already evaluated in detail in [26]. It was shown that this algorithm is
superior to other supervised learning algorithms for OWL and at least com-
petitive with the state of the art in ILP. Instead, we focus on its use within the
ontology engineering scenario. The goals of the evaluation are to 1. determine
the influence of reasoning and heuristics on suggestions, 2. to evaluate whether
the method is sufficiently efficient to work on large real world ontologies, and
3. assess the accuracy of the approximation method presented in Section 4 in
practice.

To perform the evaluation, we wrote a dedicated plugin for the Protégé ontol-
ogy editor. This allows the evaluators to browse the ontology while deciding
whether the suggestions made are reasonable. The plugin works as follows:
First, all classes with at least 5 inferred instances are determined. For each
such class, we run CELOE with different settings to generate suggestions for
definitions. Specifically, we tested two reasoners and five different heuristics.
The two reasoners are standard Pellet and Pellet combined with the instance
check procedure described in Section 4. The five heuristics are those described
in Section 3. For each configuration of CELOE, we generate at most 10 sug-
gestions exceeding a heuristic threshold of 90%. Overall, this means that there
can be at most 2 * 5 * 10 = 100 suggestions per class – usually less, because
different settings of CELOE will still result in similar suggestions. This list is
shuffled and presented to the evaluators. For each suggestion, the evaluators
can choose between 6 options (see Table 3): 1.) the suggestion improves the
ontology (improvement) 2.) the suggestion is no improvement and should not
be included (not acceptable) and 3.) adding the suggestion would be a mod-
elling error (error). In the case of existing definitions for class A, we removed
them prior to learning. In this case, the evaluator could choose between three
further options 4.) the learned definition is equal to the previous one and both
are good (equal +), 5.) the learned definition is equal to the previous one and
both are bad (equal -) and 6.) the learned definition is inferior to the previous
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SC Ontology 8 20081 28 8 5 3542 AL(D)

Adhesome 9 12043 40 33 37 2032 ALCHN (D)

GeoSkills 10 14966 613 23 21 2620 ALCHOIN (D)

Eukariotic 11 38 11 1 0 11 ALCON
Breast Cancer 12 878 196 22 3 113 ALCROF(D)

Economy 13 1625 339 45 8 482 ALCH(D)

Resist 14 239 349 134 38 75 ALUF(D)

Finance 15 16014 323 247 74 2466 ALCROIQ(D)

Earthrealm 16 931 2364 215 36 171 ALCHO(D)
Table 2
Statistics about test ontologies

one (inferior).

We used the default settings of CELOE, e.g. a maximum execution time of
10 seconds for the algorithm. The knowledge engineers were five experienced
members of our research group, who made themselves familiar with the domain
of the test ontologies. Each researcher worked independently and had to make
998 decisions for 92 classes between one of the options. The time required
to make those decisions was approximately 40 working hours per researcher.
The raw agreement value of all evaluators is 0.535 (see e.g. [1] for details)
with 4 out of 5 evaluators in strong pairwise agreement (90%). The evaluation
machine was a notebook with a 2 GHz CPU and 3 GB RAM.

Table 3 shows the evaluation results. All ontologies were taken from the
Protégé OWL 17 and TONES 18 repositories. We randomly selected 5 on-
tologies comprising instance data from these two repositories, specifically the

8 http://www.mindswap.org/ontologies/SC.owl
9 http://www.sbcny.org/datasets/adhesome.owl
10 http://i2geo.net/ontologies/current/GeoSkills.owl
11 http://www.co-ode.org/ontologies/eukariotic/2005/06/01/eukariotic.

owl
12 http://acl.icnet.uk/%7Emw/MDM0.73.owl
13 http://reliant.teknowledge.com/DAML/Economy.owl
14 http://www.ecs.soton.ac.uk/~aoj04r/resist.owl
15 http://www.fadyart.com/Finance.owl
16 http://sweet.jpl.nasa.gov/1.1/earthrealm.owl
17 http://protegewiki.stanford.edu/index.php/Protege_Ontology_Library
18 http://owl.cs.manchester.ac.uk/repository/
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Pellet/F-Measure 16.70 0.44 0.66 0.00 64.66 17.54 14.95 2.82 ± 2.93 96.91

Pellet/Gen. F-Measure 15.24 0.44 0.66 0.11 66.60 16.95 16.30 2.78 ± 3.01 92.76

Pellet/A-Measure 16.70 0.44 0.66 0.00 64.66 17.54 14.95 2.84 ± 2.93 98.59

Pellet/pred. acc. 16.59 0.44 0.66 0.00 64.83 17.48 15.22 2.69 ± 2.82 98.05

Pellet/Jaccard 16.81 0.44 0.66 0.00 64.66 17.43 14.67 2.80 ± 2.91 95.26

Pellet FIC/F-Measure 36.30 0.55 0.55 0.11 52.62 9.87 1.90 2.25 ± 2.74 95.01

Pellet FIC/Gen. F-M. 33.41 0.44 0.66 0.00 53.41 12.09 7.07 1.77 ± 2.69 89.42

Pellet FIC/A-Measure 36.19 0.55 0.55 0.00 52.84 9.87 1.63 2.21 ± 2.71 98.65

Pellet FIC/pred. acc. 32.99 0.55 0.55 0.11 55.58 10.22 4.35 2.17 ± 2.55 98.92

Pellet FIC/Jaccard 36.30 0.55 0.55 0.11 52.62 9.87 1.90 2.25 ± 2.74 94.07
Table 3
Options chosen by evaluators aggregated by class.

Earthrealm, Finance, Resist, Economy and Breast Cancer ontologies (see Ta-
ble 2).

Objective 1: The results in Table 3 show which options were selected by the
evaluators. It clearly indicates that the usage of the Fast Instance Checker
(FIC) in conjunction with Pellet (as described in Section 4) is sensible. The
results are, however, more difficult to interpret with regard to the different
employed heuristics. Using predictive accuracy did not yield good results and,
surprisingly, generalised F-Measure also had a lower percentage of cases where
option 1 was selected. The other three heuristics generated very similar results.
One reason is that those heuristics are all based on precision and recall, but in
addition the low quality of some of the randomly selected test ontologies posed
a problem. In cases of too many very severe modelling errors, e.g. conjunctions
and disjunctions mixed up in an ontology or inappropriate domain and range
restrictions, the quality of suggestions decreases for each of the heuristics.
This is the main reason why the results for the different heuristics are very
close. Particularly, generalised F-Measure can show its strengths mainly for
properly designed ontologies. For instance, column 2 of Table 3 shows that it
missed 7% of possible improvements. This means that for 7% of all classes,
one of the other four heuristics was able to find an appropriate definition,
which was not suggested when employing generalised F-Measure. The last
column in this table shows that the average value of generalised F-Measure
is quite low. As explained previously, it distinguishes between cases when
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an individual is instance of the observed class expression, its negation, or
none of both. In many cases, the reasoner could not detect that an individual
is instance of the negation of a class expression, because of the absence of
disjointness axioms and negation in the knowledge base, which explains the
low average values of generalised F-Measure. Column 4 of Table 3 shows that
many selected expressions are amongst the top 5 (out of 10) in the suggestion
list, i.e. providing 10 suggestions appears to be a reasonable choice.

In general, the improvement rate is only at about 35% according to Table 3
whereas it usually exceeded 50% in preliminary experiments with other real
world ontologies with fewer or less severe modelling errors. Since CELOE is
based on OWL reasoning, it is clear that schema modelling errors will have an
impact on the quality of suggestions. As a consequence, we believe that the
CELOE algorithm should be combined with ontology debugging techniques.
We have obtained first positive results in this direction and plan to pursue it
in future work. However, the evaluation also showed that CELOE does still
work in ontologies, which probably were never verified by an OWL reasoner.

In the second part of our evaluation, we measured the performance of opti-
misation steps (see Section 4). In order to do so, we used a similar procedure
as above, i.e. we processed the same ontologies and measured for how many
class expressions we can measure a heuristic value within the execution time
of 10 seconds. For each ontology, we averaged this over all classes with at least
three instances. We did this for four different setups by enabling/disabling
the stochastic heuristic measure and enabling/disabling the reasoner optimi-
sations. We used Pellet 2.0 as underlying reasoner. The test machine had a
2.2 GHz dual core CPU and 4 GB RAM.

Objective 2: The results of our performance measurements are shown in Ta-
ble 4. If evaluating a single class expression would take longer than a minute
(the algorithm does not stop during such an evaluation), we did not add an
entry to the table. We can observe that the approximate reasoner and the
stochastic test procedure both lead to significant performance improvements.
Since we prefer closed world reasoning as previously explained, the approxi-
mate reasoner would be a better choice even without improved performance.
The performance gain of the stochastic methods is higher for larger ontologies.
Apart from better performance on average, we also found that the time re-
quired to test a class expression shows smaller variations compared to the non-
stochastic variant. Overall, a performance gain of several orders of magnitudes
has been achieved. One can conclude that without approximate reasoning and
stochastic coverage tests, the learning method would not work reasonably well
on ontologies with large Aboxes.

Objective 3: To estimate the accuracy of the stochastic coverage tests, we
evaluated each expression occurring in a suggestion list using the stochastic
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and non-stochastic approach. The last column in Table 4 shows the average
absolute value of the difference between these two values. It shows that the
approximation differs by less than 1% on average from an exact computa-
tion of the score with low standard deviations. This means that the results
we obtain through the method described in Section 4 are very accurate and
there is hardly any influence on the learning algorithm apart from improved
performance.

ontology #tests stochastic #tests non-stochastic stoch. diff.

appr. reas. stand. reas. appr. reas. stand. reas. (± std. dev.)

SC Ontology 21 000 — 670 — 0.5% ± 0.7%

Adhesome 22 000 38 1 850 — 0.2% ± 0.5%

Resist 67 000 6 600 30 000 1 500 0.0% ± 0.0%

Finance 67 000 72 27 000 — 0.2% ± 0.4%

GeoSkills 73 000 — 24 000 — 0.5% ± 0.7%

Earthrealm 79 000 2 200 39 500 490 0.0% ± 0.0%

Breast Cancer 113 000 2 700 81 000 1 200 0.2% ± 0.4%

Eukariotic 113 000 7 900 112 000 6 200 0.1% ± 0.1%

Economy 125 000 8 300 43 000 — 0.4% ± 0.6%

Table 4
Performance assessment showing the number of class expressions, which are eval-
uated heuristically within 10 seconds, with stochastic tests enabled/disabled and
approximate reasoning enabled/disabled. The last column shows how much heuris-
tic values computed stochastically differ from real values. Values are rounded.

9 Related Work

Related work can be categorised into two areas: The first one being supervised
machine learning in OWL/DLs and the second being work on (semi-)automatic
ontology engineering methods.

Early work on supervised learning in description logics goes back to e.g. [9,10],
which used so-called least common subsumers to solve the learning problem
(a modified variant of the problem defined in this article). Later, [7] invented
a refinement operator for ALER and proposed to solve the problem by us-
ing a top-down approach. [14,19,20] combine both techniques and implement
them in the YINYANG tool. However, those algorithms tend to produce very
long and hard-to-understand class expressions. The algorithms implemented
in DL-Learner [24,25,21,26] overcome this problem and investigate the learn-
ing problem and the use of top down refinement in detail. DL-FOIL [15] is a
similar approach, which is based on a mixture of upward and downward refine-
ment of class expressions. They use alternative measures in their evaluation.
Instead of choosing different evaluation criteria, we decided to define a score
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(see Section 3) to directly influence the search for solutions of the learning
problem. Other approaches, e.g. [27] focus on learning in hybrid knowledge
bases combining ontologies and rules. Ontology evolution [28] has been dis-
cussed in this context. Usually, hybrid approaches are a more general form of
the work presented here, which enable learning powerful rules at the cost of
a larger search space. The tradeoff between expressiveness of the target lan-
guage and efficiency of learning algorithms is a critical choice in knowledge
representation as well as in symbolic machine learning. In our work, which
advances the research on applying ILP for ontology engineering towards its
practical application, we decided to keep to the OWL 2 standard.

Regarding (semi-)automatic ontology engineering, the line of work starting
in [31] and further pursued in e.g. [5] investigates the use of formal concept
analysis for completing knowledge bases. It is promising, but targeted towards
less expressive description logics and may not be able to handle noise as well
as a machine learning technique. [33] proposes to improve knowledge bases
through relational exploration and implemented it in the RELExO frame-
work 19 . It is complementary to the work presented here, since it focuses on
simple relationships and the knowledge engineer is asked a series of questions.
The knowledge engineer either has to positively answer the question or provide
a counterexample. A different approach to learning the definition of a named
class is to compute the so called most specific concept (msc) for all instances
of the class. The most specific concept of an individual is the most specific
class expression, such that the individual is instance of the expression. One
can then compute the least common subsumer (lcs) [6] of those expressions
to obtain a description of the named class. However, in expressive description
logics, an msc does not need to exist and the lcs is simply the disjunction of all
expressions. For light-weight logics, such as EL, the approach appears to be
promising. [34] focuses on learning disjointness between classes in an ontology
to allow for more powerful reasoning and consistency checking. In [13], induc-
tive methods have been used to answer queries and populate ontologies using
similarity measures and a k-nearest neighbour algorithm. Along this line of
research, [11] defines similarity measures between concepts and individuals in
description logic knowledge bases, which share similarities with the heuristic
we defined in this article. Naturally, there is also a large amount of research
work on ontology learning from text. The most closely related approach in this
area is [32], in which OWL DL axioms are obtained by analysing sentences,
which have definitional character.

19 http://code.google.com/p/relexo/
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10 Conclusions and Future Work

We presented the CELOE learning method specifically designed for extending
OWL ontologies. Five heuristics were implemented and analysed in conjunc-
tion with CELOE along with several performance improvements. A method
for approximating heuristic values has been introduced, which is useful be-
yond the ontology engineering scenario to solve the challenge of dealing with
a large number of examples in ILP [35]. Furthermore, we biased the algorithm
towards short solutions and implemented optimisations to increase readability
of the suggestions made. The resulting algorithm was implemented in the open
source DL-Learner framework. We argue that CELOE is the first ILP based
algorithm, which turns the idea of learning class expressions for extending on-
tologies into practice. CELOE is integrated into two plugins for the ontology
editors Protégé and OntoWiki and can be invoked using just a few mouse
clicks.

We also performed a real world study on several ontologies to assess the per-
formance of the algorithm in practice. While the results are generally promis-
ing, we also faced several hurdles due to significant modelling errors in the
randomly selected ontologies. For this reason, we plan to investigate combi-
nations of ontology debugging and class expression learning in future work.
Preliminary experiments indicate that this can increase the percentage of im-
provements per class from about 35% to more than 50% with relatively simple
modifications. Other areas of future work are the involvement of domain ex-
perts in the evaluation process, extensions towards the Web of Data, and
combinations of RELExO and DL-Learner.
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