AutoSPARQL:
Let Users Query Your Knowledge Base

Jens Lehmann'! and Lorenz Bithmann'
AKSW Group
Department of Computer Science
Johannisgasse 26
04103 Leipzig, Germany
{lehmann, buehmann}@informatik.uni-leipzig.de

Abstract. An advantage of Semantic Web standards like RDF and
OWL is their flexibility in modifying the structure of a knowledge base.
To turn this flexibility into a practical advantage, it is of high importance
to have tools and methods, which offer similar flexibility in exploring in-
formation in a knowledge base. This is closely related to the ability to
easily formulate queries over those knowledge bases. We explain bene-
fits and drawbacks of existing techniques in achieving this goal and then
present the QTL algorithm, which fills a gap in research and practice. It
uses supervised machine learning and allows users to ask queries with-
out knowing the schema of the underlying knowledge base beforehand
and without expertise in the SPARQL query language. We then present
the AutoSPARQL user interface, which implements an active learning
approach on top of QTL. Finally, we evaluate the approach based on a
benchmark data set for question answering over Linked Data.

1 Introduction and Motivation

The Web of Data has been growing continuously over the past years and now
contains more than 100 public SPARQL endpoints with dozens of billion of
triples.! The data available via those endpoints spans several domains reaching
from music, art and science to spatial and encyclopaedic information as can be
observed at http://lod-cloud.net. Providing this knowledge and improving its
quality are important steps towards realising the Semantic Web vision. However,
for this vision to become reality, knowledge also needs to be easy to query and
use.

Typically, querying an RDF knowledge base via SPARQL queries is not con-
sidered an end user task as it requires familiarity with its syntax and the struc-
ture of the underlying knowledge base. For this reason, query interfaces are often
tight to a specific knowledge base. More flexible techniques include facet based
browsing and graphical query builders. We briefly analyse advantages and dis-
advantages of those approaches and explain how they relate to AutoSPARQL.

Knowledge Base Specific Interfaces: Special purpose interfaces are often con-
venient to use since they usually shield the user from the complexity and het-
erogeneity of the underlying knowledge bases. The vast majority of web search
forms fall into this category. Such interfaces are often designed to capture the
most relevant queries users may ask. However, those queries have to be known in

! See http://ckan.net for data set statistics.

2 Lehmann, Biihmann

advance. They usually do not allow to explore the underlying RDF graph struc-
ture. Other disadvantages are the development effort required for developing
specific interfaces and their inflexibility in case of schema changes or extensions.
Facet-Based Browsing is a successful technique for exploring knowledge bases,
where users are offered useful restrictions (facets) to the resources s/he is view-
ing. The technique is not knowledge base specific and, thus, requires no or only
small adaptations to be used on top of existing SPARQL endpoints. Two ex-
amples are the Neofonie Browser http://dbpedia.neofonie.de, the Virtuoso
facet service http://dbpedia.org/fct/ and OntoWiki? facets. The first is tai-
lored towards DBpedia, whereas the latter two examples can be run on top of
arbitrary knowledge bases. A disadvantage of facet-based browsers is that they
allow only a limited set of queries. For instance, it is easy to query for objects
belonging to a class “Person”. However, facets do not work well for more complex
queries like “Persons who went to school in Germany”, because the restriction
“in Germany” refers to the school and not directly a person. Another type of
difficult queries is ”Persons who live in x“, where x is a small city. In this case,
the difficulty is that the facet ”live in z* may not be offered to the user, because
there are many other more frequently occurring patterns offered as facets.

Visual SPARQL Query Builders lower the difficulty of creating SPARQL
queries. However, their target user groups are still mostly knowledge engineers
and developers. Examples of visual query builders are SPARQL Views? [4] and
Virtuoso Interactive Query Builder*. Even though the queries are visualised,
users still need some understanding of how SPARQL queries actually work and
which constructs should be used to formulate a query. To visually build a query,
users also need a rough understanding of the underlying schema.

Question Answering (QA) Systems allow the user to directly enter his ques-
tion, e.g. in Ginseng®, NLP-Reduce® or PowerAqua’. Usually, they need to be
adapted to a particular domain, e.g. via patterns or models. Cross domain ques-
tion answering without user feedback can be brittle.

AutoSPARQL: In this paper, we propose the QTL algorithm and the Au-
toSPARQL user interface. It provides an alternative to the above interfaces with
a different set of strengths and restrictions. AutoSPARQL uses active super-
vised machine learning to generate a SPARQL query based on positive exam-
ples, i.e. resources which should be in the result set of the SPARQL query, and
negative examples, i.e. resources which should not be in the result set of the
query. The user can either start with a question as in other QA systems or
by directly searching for a relevant resource, e.g. ”Berlin“. He then selects an
appropriate result, which becomes the first positive example. After that, he is
asked a series of questions on whether a resource, e.g. ”Paris*, should also be
contained in the result set. These questions are answered by ”yes* or "no*. This
feedback allows the supervised learning method to gradually learn which query

2 http://ontowiki.net

3 http://drupal.org/project/sparql_views

4 http://wikis.openlinksw.com/dataspace/owiki/wiki/0OATWikiWeb/
InteractiveSparqlQueryBuilder

® http://www.ifi.uzh.ch/ddis/research/talking-to-the-semantic-web/
ginseng/

S http://www.ifi.uzh.ch/ddis/research/talking-to-the-semantic-web/
nlpreduce/

" http://technologies.kmi.open.ac.uk/poweraqua/

AutoSPARQL 3

the user is likely interested in. The user can always observe the result of the cur-
rently learned query and stop answering questions if the algorithm has correctly
learned it. The system can also inform the user if there is no learnable query,
which does not contradict with the selection of positive and negative examples.
AutoSPARQL can generate more complex queries than facet based browsers and
most knowledge base specific applications, while there are some restrictions — ex-
plained in detail later — compared to manually or visually creating queries. We
argue that it is easier to use than manual or visual SPARQL query builders and
not much more difficult to use than facet-based browsers or standard QA sys-
tems. Due to this different sets of strengths and weaknesses, it provides a viable
alternative to the methods described above. Our claim is that AutoSPARQL is
the first user interface, which allows end users to create and refine non-trivial
SPARQL queries over arbitrary knowledge bases.

Overall, we make the following contributions:

introduction of a new active learning method for creating SPARQL queries
the Query Tree Learner (QTL) algorithm

the AutoSPARQL interface at http://autosparql.dl-learner.org

an evaluation on a benchmark data set for question answering over Linked
Data

Sections 2 to 4 are the formal part of the paper. In Section 2, we introduce
the concept of query trees as underlying structure. After that, we show basic
operations on those trees and proof their properties in Section 3. The following
section explains the QTL algorithm, which combines results from the previous
sections. In Section 5, the AutoSPARQL workflow and user interface are pre-
sented. In Section 6, we measure how well AutoSPARQL works on a benchmark
data set for question answering over Linked Data. Related work is described in
Section 7. Finally, some high level key aspects of our approach are discussed in
Section 8.

2 Query Trees

Before explaining query trees, we fix some preliminaries. We will often use stan-
dard notions from the RDF and SPARQL specifications®, e.g. triple, RDF graph,
triple pattern, basic graph pattern. We denote the set of RDF resources with R,
the set of RDF literals with L, the set of SPARQL queries with SQ, and the set
of strings with S. We use f|p to denote the restriction of a function to a domain
D.

We call the structure, which is used internally by the QTL algorithm, a query
tree. A query tree roughly corresponds to a SPARQL query, but not all SPARQL
queries can be expressed as query trees.

Definition 1 (Query Tree). A query tree is a rooted, directed, labelled tree
T = (V,E,{), where V is a finite set of nodes, E CV x R XV is a finite set
of edges, NL = LU RU {?} is a set of node labels and ¢ : V. — NL is the
labelling function. The root of T is denoted as root(T). If £(root(T)) =7, we call
the query tree complete. The set of all query trees is denoted by T and Tc for
complete query trees. We use the notions V(T') :=V, E(T) := E, {(T) :={ to
refer to nodes, edges and label function of a tree T. We say vi — -+ <™ vp41
is a path of length n from vy to vy in T iff (vi,e5,vi41) € E for 1 <i < n.
The depth of a tree is length of its longest path.

8 http://www.w3.org/TR/rdf-concepts, http://wuw.w3.org/TR/rdf-sparql-query

4 Lehmann, Biihmann

/\ Band SELECT ?x0 WHERE {
type t ?x0 rdf:type dbo:Band.
instruMe™ | E_Guitar P

, /—> ?7x0 dbo:genre 7x1.

’ enre ? ?x1 dbo:instrument dbp:Electric_guitar.
\\g /,/ styl o Jazz ?x1 dbo:stylisticOrigin dbp:Jazz.
I + Origin }

Fig. 1. Query tree (left) and corresponding SPARQL query (right).

Definition 2 (Subtrees as Query Trees). If T = (V, E,{) is a query tree
and v € V, then we denote by T(v) the tree T' = (V' E', {") with root(T') = v,
V' ={v"| there is a path from v to v'}, E' = ENV'x Rx V' and l' = {}y.

Definition 3 (Node Label Replacement). Given a query tree T', a node v €
V(T) and n € NL, we define £[v — n] as £[v — n](v) := n and l[v — L](w) :=
Lw) for all w # v. We define Tlv — n] = (V(T),E(T),{T)[v — n]) for
v € V(T). We say that the label of v is replaced by n.

2.1 Mapping Query Trees to SPARQL Queries

Each query tree can be transformed to a SPARQL query. The result of the
query always has a single column. This column is created via the label of the
root node, which we will also refer to as the projection variable in this article.
Please note that while QTL itself learns queries with a single column, i.e. lists
of resources, those can be extended via the AutoSPARQL user interface. Each
edge in the query tree corresponds to a SPARQL triple pattern. Starting from
the root node, the tree is traversed as long as we encounter variable symbols.
Each variable symbol is represented by a new variable in the SPARQL query.
An example is shown in Figure 1.

Formally, the mapping is defined as follows: Each node with label ? is as-
signed a unique number via the function id : V — N. A root node is as-
signed value 0. The function mapnode : V' — S is defined as: mapnode(n) =
772" 4+ id(n) if £(n) =7 and mapnode(n) = n otherwise. Note that “+” denotes
string concatenation. Based on this, the function mapedge : E +— S is defined as
map(v)+” 7 +e+” 7 +map(v’)+7.”. Finally, the function spargl : T¢ — SQ
is defined as shown in Function 1 by tree traversal starting from the root of T’
and stopping when a non-variable node has been reached.

2.2 Mapping Resources to Query Trees

Each resource in an RDF graph can be mapped to a query tree. Intuitively, the
tree corresponds to the neighbourhood of the resource in the graph. In order
to map a resource to a tree, we have to limit ourselves to a recursion depth for
reasons of efficiency. This recursion depth corresponds to the maximum nesting
of triple patterns, which can be learned by the QTL algorithm, which we will
detail in Section 4. Another way to view a query tree for a resource is that it
defines a very specific query, which contains the resource itself as result (if it

AutoSPARQL 5

query = “SELECT 7x0 { 7x0 ?y 7z . ”;
nodequeue = [root(T")];
while nodequeue not empty do
v = poll(nodequeue) // pick and remove first node ;
foreach edge (v,e,v’) in E(T) do
query + = mapedge((v,e,v')) ;
L if ¢(v") =? then add v at the end of nodequeue

N O Uk W N =

®

query + = “}";
9 return query

Function sparql(7)

occurs at least once in the subject position of a triple in the knowledge base).
The formal definition of the query tree mapping is as follows:

Definition 4 (Resource to Query Tree Mapping). A resource r in an RDF
graph G = (V, E,£) is mapped to a tree T' = (V', E', l') with respect to a recur-
sion depth d € N as follows: V' = {v, | v, € V, there is a path p of length | <
d from v tov in G}, E' =V'x RxV'NE, {' = {y:. The result of the function
map: R x G x N — T¢ is then defined as T := T'[root(T") —7].

Query trees act as a bridge between the description of a resource in an RDF
graph and SPARQL queries containing the resource in their result set. Using
them enables us to define a very efficient learning algorithm for SPARQL queries.
Note that a query tree T does not contain cycles, whereas an RDF graph G can,
of course, contain cycles. Also note that query trees intentionally only support

a limited subset of SPARQL.

3 Operations on Query Trees

In this section, we define operations on query trees, which are the basis of the
QTL algorithm. We define a subsumption ordering over trees, which allows to
apply techniques from the area of Inductive Logic Programming [13]. Specifically,
we adapt least general generalisation and negative based reduction [2].

3.1 Query Tree Subsumption

In the following, we define query tree subsumption. Intuitively, if a query tree T}
is subsumed by T3, then the SPARQL query corresponding to T} returns fewer
results than the SPARQL query corresponding to T5. The definition of query
tree subsumption will be done in terms of the SPARQL algebra. Similar as in [1,
14], we use the notion [[¢]]¢ as the evaluation of a SPARQL query ¢ in an RDF
graph G.

Definition 5 (Query Tree Subsumption). Let T1 and Ty be complete query
trees. Ty is subsumed by Ts, denoted as Ty = Ty, if we have [[sparql(T1)]]c(?20) C
[[sparql(T2)]|a(?x0) for any RDF graph G.

Definition 6 (< relation). For query trees Ty and Ty, we have Ty < Ty iff the
following holds:

6 Lehmann, Biihmann

1. if L(root(Ty)) # ?, then £(root(T1)) = £(root(Ty))

2. for each edge (root(T3),p,vs) in Ty there exists an edge (root(T1),p,v1) in
T, such that:
(a) if L(ve) # 7, then £(vy) = £(va)
(b) if L(vy) =7, then T'(v1) < T(va) (see Definition 2)

We define Ty ~To as Ty < Ty and Ty <Ty. Ty < Ty is defined as Ty < T and
T, # Ty,

The following is a consequence of the definition of <. It connects the structure
of query trees with the semantics of SPARQL.

Proposition 1. Let Ty and T be complete query trees. Ty < Ty implies Ty = T5.

Proof. We prove the proposition by induction over the depth of T5. Let G be an
RDF graph.

Induction Base (depth(T2) = 0): In this case, [[sparql(T2)]]¢(?z0) is the set
of all resources occurring in subjects of triples in G and, therefore, T7 < T5.

Induction Step (depth(Tz) > 0): sparql(Ti) and sparql(T:) have a basic
graph pattern in their WHERE clause, i.e. a s set of triple patterns. Due to
the definition of sparql, the triple patterns with subject 720 have one of the
following forms: 1.) 720 ?y 7z 2.) 720 p m with m € RUL 3.) 720 p ?xi.
Each such pattern in a SPARQL query is a restriction on 7z0. To prove the
proposition, we show that for each such triple pattern in sparql(T5), there is a
triple pattern in sparql(Ty), which is a stronger restriction of ?7x0, i.e. leads to
fewer results for 720. We do this by case distinction:

1. 720 ?y ?z: The same pattern exists in sparql(T}).

2. 720 p m with m € RU L: Thus, there is an edge (root(Ts), p, v2) with £(ve) =
m in Ty. Because of the definition of <, there is an edge (root(T1), p, v1) with
£(v1) = m in Ty, which leads to the same triple pattern in sparql(Ty).

3. 720 p ?xi: This means that there is an edge (root(Tz), p,ve) with ¢(vy) =7
in T5. Let (root(T1),p,v1) with ¢(v1) = s be a corresponding edge in T
according to the definition of <. We distinguish two cases: a) s #?. In this
case, sparql(Ty) contains the pattern ?z0 p s, which is a stronger restric-
tion on ?z0 than 720 p ?xi. b) s =?. In this case, sparql(Ty) contains the
pattern ?z0 p ?xzj. By induction, we know T'(v1) < T'(v9) and, consequently,
[[sparql(T(v1)]]a(?20) C [[sparql(T(v2)]]a(?20), i.e. the pattern is a stronger
restriction on 7z0, because there are fewer or equally many matches for 7xj
than for ?xi. a

The proposition means that whenever 77 < T, the result of the SPARQL
query corresponding to 77 does not return additional results compared to the
SPARQL query corresponding to T5. Note that the inverse of the proposition
does not hold: If a query ¢; returns fewer results than a query g¢o, this does not
mean that 77 < T5 for the corresponding query trees, because ¢; and go can be
structurally completely different queries.

AutoSPARQL 7

3.2 Least General Generalisation

The least general generalisation (lgg) operation takes two query trees as input
and returns the most specific query tree, which subsumes both input trees. We
first define the operation lgg algorithmically and then proof its properties.

1 init 7= (V,E,£) with V = {v}, E=0, £(v) = 7;

2 if £(v1) = £(v2) then £(v) = £(v1);

3 foreach p in {p' | Jvi.(v1,p’,v1) € E(T1) and Fvs.(v2,p’,v3) € E(T2) } do
4 foreach vi with (v1,p,v}) € E(T1) do

5 foreach vy with (v2,p,vy) € E(T:) do

6 v = root(lgg(T (v1), T (v3))); add = true;

7 foreach vprev with (v, P, Vprev) € E(T) do

8 if add = true then

9 if T(vprev) < T(v") then add = false;

10 L if T(v") < T'(vprev) then remove edge (v, p, Vpres) from T
11 if add = true then add edge (v,p,v’) to T}

12 return T Function 1gg (77, T»)

Function 2 defines the algorithm to compute least general generalisations of
query trees. It takes two query trees 77 and 75 as input and returns 7' as their
lgg. T is initialised as empty tree in Line 1. The next line compares the labels of
the root nodes of T7 and T5. If they are equal, then this label is preserved in the
generalisation, otherwise 7 is used as label. Line 3 groups outgoing edges in the
root nodes of 77 and 75 by their property label — only if a property is used in both
trees, it will be part of the Igg. Line 4 and 5 are used for comparing pairs of edges
in T7 and 7T5. For each combination, the lgg is recursively computed. However, in
order to keep the resulting tree small, only edges which do not subsume another
edge are preserved (Lines 7 to 10). Finally, Line 11 adds the computed lgg to
the tree T, which is returned. lgg is commutative. We use lgg({T},...,Tn}) as
shortcut notation for lgg(Ty,lgg(To, ..., Ty)...).

Proposition 2. Let lgg be defined as in Function 2, Th and Ty be trees and
T =1lgg(T1,Ts). Then the following results hold:

1. Ty <T and T < T (i.e. lgg generalises)
2. for any tree T', we have Ty < T', To <T' implies T < T’ (i.e. lgg is least)

Proof. The proofs are as follows:

1.) We prove by induction over the depth of T. Without loss of generality,
we show T7 < T.

Induction Base (depth(T') = 0): If £(root(T")) #7, then by Function 2 £(root(Ty)) =
L(root(T)) (see also table below).

Induction Step (depth(T)) > 0): We have to show that for an edge e =
(root(T),p,v) € E(T) the conditions in Definition 6 hold. Due to the defini-
tion of Function 2, e = (root(T), p, root(lgg(T(v1), T(v2)))) was created from two

8 Lehmann, Biihmann

edges (root(T1),p,v1) € E(Ty) and (root(Tz),p,v2) € E(T3). If £(v) #? (Defi-
nition 6, condition 1), then ¢(vy) = £(v) by Line 2 of Function 2. If £(v) =?
(condition 2), then T'(v1) < T'(v) follows by induction.

2.) We use induction over the depth of T'.

Induction Base (depth(T) = 0): We first show depth(T") = 0. By contradic-
tion, assume that 7' has at least one edge. Let p be the label of an outgoing
edge from the root of T”. By Definition 6, both 77 and T5 must therefore also
have outgoing edges from their respective root nodes with label p. Consequently,
T = lgg(T1,T>) has an outgoing edge from its root by Function 2 (Lines 4-11
create at least one such edge). This contradicts depth(T') = 0.

We make a complete case distinction on root node labels of T and 75 (note
that m #£?, n #£7):

L(root(Th))|€(root(Tz))|€(root(T')) according to Function 2
m m m
m n(#£m) ?
m ? ?
? m ?
? ? ?

In Row 1, £(root(T")) is either m or 7, but in any case T' < T”. For Rows 2-5,
£(root(T")) =?, because otherwise T} £ T' or Ty £ T'. Again, we have T < T".

Induction Step (depth(T) > 0): Again, we show T < T using Definition 6:

Condition 1: 7 #£ £(root(T")) = £(root(T1)) = £(root(T)) (from Ty < T’ and
Ty <T') = L(root(T)) (from Function 2)

Condition 2: Let (root(T”),p,v’) be an edge in T”. Due to 77 < T’ and
Ty < T, there is an edge (root(Ty),p,v1) in Ty and an edge (root(Ts),p,v2) in
T,

2a): 7 £ L(V') = L(v1)) = L(ve) (from Ty < T" and T < T') = £(v) (from
Function 2)

2b): Due to £(v') =7, we get T'(v1) < T'(v') and T(vy) < T(v'). Hence, we
can deduce T'(v) = lgg(T'(v1), T (v2)) < T'(v") by induction. O

3.3 Negative Based Reduction

Negative based reduction is used to generalise a given tree T" using trees 11, ..., T,
as input. For each tree, we assume T; € T (1 < i < n). The idea is to generalise
T by removing edges or changing node labels without overgeneralising. Overgen-
eralising means that T; < T for some i (1 < ¢ < n). Negative based reduction has
already been used in ILP and is a relatively simple procedure in most cases. In
QTL, it is more involved, which is why we only sketch it here due to lack of space.
The basic idea is that upward refinement operations are used on the given query
tree T until a negative example is covered. When this happens, QTL queries for
results of the SPARQL query corresponding to the refined tree. If there are no
new resources compared to the lgg, then a different upward refinement path is
used. If there are new resources, then a binary search procedure is used to find
the most specific tree on the upward refinement path, which still delivers new
resources. This tree is then returned by QTL.

4 QTL Algorithm

The Query Tree Learner (QTL) integrates the formal foundations from Sec-
tions 2 and 3 into a light-weight learning algorithm. QTL is a supervised al-
gorithm, i.e. it uses positive and negative examples as input. In this case, an
example is an RDF resource. In a first step, all examples are mapped to query
trees as shown in Algorithm 3. The mapping, specified in Definition 4, requires

AutoSPARQL 9

a recursion depth as input. The recursion depth has influence on the size of
the generated tree. It is the maximum depth of the generated query tree and,
therefore, also the maximum depth of the learned SPARQL query. The mapping
method also requires a method to obtain information about a resource from G.
In our implementation, this is done via SPARQL queries with the option to use
a cache in order to minimise the load on the endpoint. A properly initialised
cache also ensures roughly constant response times for the user.
input : RDF graph G, recursion depth d, pos. examples

Et ={ri,...,rm} C R, ET # (), neg. examples E~ = {s1,...,8,} C R
output: SPARQL Query ¢
TY = {T;" | Ji.r; € EY, T}V = map(G,d,r;)}; T~ analogously;
T=T; fori+ 2tomdoT=lgg(T,T,");
if there exists a T, with T, < T then print "no learnable query exists” ;
if T~ =0 then T" = pg(T) else T = nbr(T, T);

q = sparql(T”) Algorithm 3: QTL Algorithm.

(S N I S

The next step in QTL is to compute the lgg of all positive examples (Line
2). If this results in a tree, which subsumes negative examples, then no query
fitting the positive and negative examples can be learned. This is a consequence
of Proposition 2. Usually, this happens when the RDF graph does not contain
necessary features to construct a query. For instance, a user may want to get all
cities in France, but the endpoint does not contain properties or classes to infer
that some city is located in a particular country.

In Line 4 of the algorithm, negative based reduction (nbr) is used to gener-
alise the lgg. A potentially large tree containing everything the positive examples
have in common, is generalised by using negative examples as explained in Sec-
tion 3. In case there are no negative examples available yet, a different operation,
positive generalisation (pg) is used. Positive generalisations uses the nbr func-
tion, but calls it with a seed of resources which is disjoint with the positive
examples. This allows to use QTL as positive only algorithm. Finally, in Line 5
of Algorithm 3, the query tree is converted into a SPARQL query. Some charac-
teristics of QTL in combination with the AutoSPARQL interface are discussed
in Section 8.

5 AutoSPARQL User Interface

AutoSPARQL is available at http://autosparql.dl-learner.org. It is a rich
internet application based on the Google Web Toolkit. AutoSPARQL and the
QTL algorithm are part of DL-Learner [9]. Their source code is available in the
DL-Learner SVN repository.

[No learnable query exists]

Answer 'yes' or 'no'HSuggest new example)

[Query results don'f match user intend]

Show query results

.%Search ter@%{Select positive example

[Query results match user intend]

Fig. 2. AutoSPARQL Workflow

The tool implements an active learning method as shown in Figure 2. In
a first step, the user performs a query and selects at least one of the search
results as positive example, i.e. it should be returned as result of the query
he constructs. From this, an initial query is suggested by QTL and the user is
asked the question whether a certain resource should be included in the result set.

10 Lehmann, Biihmann

After each question is answered, QTL is invoked again. This process is the active
learning part of AutoSPARQL. It is iterated until the desired query is found or
no learnable query, matching the examples, exists. The user interface allows
several other options such as changing previous decisions, deletion of examples
or the selection of several positive examples in one through a tabular interface.
The following result shows that AutoSPARQL always returns a correct query
or replies that no learnable query exists after a finite number of iterations. The
proof, which mainly uses the properties of the lgg function, is omitted, because
of lack of space.

Proposition 3. Let A = {ry,...,r,} be a target set of resources in an RDF
graph G, d € N and assume that a user/oracle answers questions by AutoSPARQL
correctly. If there exists a query tree T with depth < d such that [[spargl(T)]]a(?20)
= A, then AutoSPARQL learns a tree T' with [[sparql(T")]]c(?20) = A, else it
reports that no such tree exists.

In order to improve the efficiency, AutoSPARQL can optionally use the nat-
ural language query of the user to filter the query trees. If neither the property
nor the label of the target node of an edge in a query tree has a sufficiently high
string similarity to a phrase or a WordNet-synonym of a phrase in the natural
language query, then it is discarded. Four different string metrics are combined to
reduce the probability of filtering relevant edges. If this filter in AutoSPARQL is
enabled, the completeness result above no longer holds, because there is non-zero
probability that a relevant edge might be filtered.

8, AutoSPARQL

Result 3

© Please searcl h for It, e.g. if you want to
query "cities in Fi ould search for "Paris” Table Query Graph
Once you have fo and marked it with "+", an Label
interactive guide her questions, which
Tead you to your
Search <
Enter search term Search

Examples. S
Should belong to query result: Should not belong to query result:

© No examples selected © Mo examples selected

[[Page Drle

Fig. 3. Screenshot of initial AutoSPARQL user interface: It consists of four areas (1)
question panel (2) search panel (3) query result panel and (4) example overview panel.

After QTL has been invoked through a question-answer session, AutoSPARQL
allows to further fine-tune the query. For instance, users can select which prop-
erties to display, ordering by a property and language settings. As an example,

AutoSPARQL 11

a typical AutoSPARQL session for learning the following query could look as
follows. Note that the resources are displayed via a knowledge base specific tem-
plate.

PREFIX dbpedia: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT 7band ?7label 7homepage 7genre WHERE {
?band a dbo:Band .

?band rdfs:label 7label .

OPTIONAL { ?band foaf:homepage Thomepage } .
7band dbo:genre 7genre .

?genre dbo:instrument dbpedia:Electric_guitar .
?genre dbo:stylisticOrigin dbpedia:Jazz .

b

ORDER BY 7label LIMIT 100

— search for “bands with a genre which mixes electric guitars and Jazz”

— resource: dbpedia:Foals answer: YES

— resource: dbpedia:Hot_Chip answer: NO

— resource: dbpedia:Metalwood answer: YES

— resource: dbpedia:Polvo answer: YES

— resource: dbpedia:0zric_Tentacles answer: YES

— resource: dbpedia:New_Young_Pony_Club answer: NO

— select “genre” as property to return and “homepage” as additional property
— click on “label” column head to order by it and adjust limit

After that, the query can be saved and a URL is provided for the user to
call it. Results will be cached with a configurable timeout on the AutoSPARQL
server, such that users can efficiently embed it in websites. In particular, in com-
bination with DBpedia Live, this allows users to include up-to-date information
in homepages, blogs or forums.

6 Evaluation

We used the benchmark data set of the 1st Workshop on Question Answering
over Linked Data (QALD)?, which defines 50 questions to DBpedia and their
answers. From those queries, we filtered those, which return at least 3 resources.
This excludes questions asking directly for facts instead of lists. Furthermore, we
filtered queries, which are not in the target language of AutoSPARQL, e.g. con-
tain UNION constructs. The resulting evaluation set contains 15 natural lan-
guage queries. Since answers for all questions were given, we used them as oracle,
which answers ”YES“ when a resource is in the result set and ”"NO*“ otherwise.
We seeded the positive examples by using the search function of Wikipedia. At
most 3 positive examples from the top 20 search results were selected. If less than
3 positive examples are in the top 20, then we picked positive examples from
the answer set. In any case, the active learning approach starts with 3 positive
and 1 negative examples. The NLP filter, described in the previous section, was
switched on since DBpedia has a very large and diverse schema.

9 http://www.sc.cit-ec.uni-bielefeld.de/qald-1

12 Lehmann, Biihmann

100000 100000

10000 10000

time in ms
time in ms

1000 T T T 1000 T T T T T
0 2 4 6 8 10 0 1 2 3 4 5 6

examples needed number of triple patterns

Fig. 4. Statistics showing that roughly 1 s per example are needed (left) and roughly
constant time independent of the number of triple patterns (right). The peak in both
images is caused by only one single question. All other questions needed less than 10 s
to be learned correctly.

The hardware, we used, was a 6-core machine with 2 GB RAM allocated to
the VM. We used a recursion depth of 2 for our experiments. We asked questions
against a mirror of http://dbpedia.org/sparql containing DBpedia 3.5.1. Due
to Proposition 3, AutoSPARQL always learns a correct query via this procedure.
We were interested in two questions: 1. How many examples are required to learn
those queries? 2. Is the performance of AutoSPARQL sufficient?

Regarding the number of examples, we found that 4 (in this case the lgg
was already the solution) to 9 were needed and 5 on average. We consider this
number to be very low and believe that this is due to the combination of active
learning and lggs, which are both known not to require many examples. Most of
the examples were positives, which indicates that the questions by AutoSPARQL
are mostly close to the intuition of the user, i.e. he is not required to look at a
high number of seemingly unrelated RDF resources.

Regarding performance, we discovered that AutoSPARQL requires 7 seconds
on average to learn a query with a maximum of 77 seconds. From this, < 1 %
of the time are required to calculate the lgg, 73 % to calculate the nbr and 26
% for SPARQL queries to a remote endpoint.

Overall, we consider the performance of AutoSPARQL to be good and a lot
of engineering effort was spend to achieve this. The low computational effort
required allows to keep response times for users at a minimum and learn several
queries in parallel over several endpoints on average hardware.

Apart from the total numbers, we looked at some aspects in more detail.
First, we analysed the relation between the number of examples needed and the
total time required by AutoSPARQL. Figure 4 shows that roughly the same
time per example is needed independent of the total number of examples. This
means that the response time for the user after each question remains roughly
constant. We also analysed whether there is a relation between the complexity
of a query, which we measure in number of triple patterns here, and the time
required to learn it. Figure 4 shows that there is no such correlation, i.e. more
complex queries are not harder to learn than simple ones. This is common for lgg
based approaches. The peak in both diagrams is based on one single question,
which was the only question where 7 examples were needed and 1 of 2 questions

AutoSPARQL 13

with 4 triple patterns in the learned query. We discovered that in this case the
query tree after the lgg was still very large, so the nbr needed more time than
in the other questions.

7 Related Work

In Section 1, we already compared the AutoSPARQL user interface to other tech-
niques like facet-based browsing, visual query builders and interfaces adapted to
a specific knowledge base. In this section, we focus on the technical aspects of
our solution. AutoSPARQL was mainly inspired by two main research areas:
Inductive Logic Programming (ILP) and Active Learning.

The target of ILP [13] is to learn a hypothesis from examples and background
knowledge. It was most widely applied for learning horn clauses, but also in
the Semantic Web context based on OWL and description logics [6,11, 10,7, 5]
with predecessors in the early 90s [8]. Those approaches use various techniques
like inverse resolution, inverse entailment and commonly refinement operators.
Least general generalisation, as we used here, is one of those techniques. It has
favourable properties in the context of AutoSPARQL, because it is very suitable
for learning from a low number of examples. This is mainly due to the fact,
that lgg allows to make large leaps through the search space in contrast to
gradual refinement. More generally, generate-and-test procedures are often less
efficient then test-incorporation as pointed out in an article about the ProGolem
system [12], which has influenced the design of our system. ProGolem, which
is based on horn logics, also employs negative based reduction, although in a
simpler form than in QTL. Drawbacks of lggs usually arise when expressive
target languages are used and the input data is very noisy. The latter is usually
not a problem in AutoSPARQL, because examples are manually confirmed and
can be revised during the learning process. As for the expressiveness of the target
language, we carefully selected a fragment of SPARQL, where lggs exist and can
be efficiently computed.

Active learning (survey in [15]) aims to achieve high accuracy with few train-
ing examples by deciding which data is used for learning. As in AutoSPARQL,
this is usually done by asking a human questions, e.g. to classify an example
as positive or negative. Active learning has been combined with ILP in [2] to
discover gene functions. In our context, an advantage of active learning is that it
reduces the amount of background knowledge required for learning a SPARQL
query by only considering the RDF neighbourhood of few resources. This way,
the burden on SPARQL endpoints is kept as low as possible and the memory
requirements for AutoSPARQL are small, which allows to serve many users in
parallel. In addition, we use a cache solution, not described here for brevity, to
reduce network traffic and allow predictable execution times.

Also related are natural language query interfaces like Google Squared!?,
which is easy to use, but less accurate and controllable than AutoSPARQL.
In [3], intensional answers have been learned by applying lggs on answers re-
trieved via the ORAKEL natural language interface. In contrast to our approach,
this is done via clausal logic. An integration of natural language interfaces and
AutoSPARQL is an interesting target for future work.

10 http://www.google. com/squared

14 Lehmann, Biihmann

8 Discussion and Conclusions

In the final section, we discuss some key aspects of AutoSPARQL/QTL and give
concluding remarks.

Efficiency: As demonstrated, one of the key benefits of our approach is its
efficiency. This was possible by focusing on a subset of SPARQL and using query
trees as a lightweight data structure acting as bridge between the structure of
the background RDF graph and SPARQL queries.

Expressiveness: AutoSPARQL supports a subset of SPARQL, which we deem
relevant to cover relevant for typical queries by users. However, it certainly
does not render SPARQL experts unnecessary, because e.g. when developing
Semantic Web applications, more complex queries are needed. Some constructs
in SPARQL, e.g. UNION, were avoided, because they would significantly in-
crease the search space and render the approach less efficient. Some extensions
of the current expressiveness are already planned and preliminary algorithms
drafted, e.g. for learning graph patterns with the same variable occurring more
than once in the object of triple patterns and support for different FILTERs.

Low number of questions: Because of Proposition 3, AutoSPARQL is guar-
anteed to terminate and correctly learn a query tree if it exists. The evaluation
shows that a low number of questions is needed to learn typical queries. In the
future, we will integrate a natural language interface in AutoSPARQL, such
that the first search by the user (see workflow in Figure 2) returns more positive
examples, which further simplifies query creation.

Noise: AutoSPARQL/QTL do not support handling noisy data, i.e. it is
assumed that the answers to the questions posed by AutoSPARQL are correct.
While it is extensible in this direction, we currently pursue the approach of
notifying a user when there is a conflict in his choice of positive and negative
examples. This can then be corrected by the user. Given the low number of
examples in our active learning strategy, this appears to be feasible. However,
we envision adding noise handling to QTL for other usage scenarios which do
not have these favourable characteristics.

Reasoning: Since AutoSPARQL uses triple stores, it depends on the infer-
ences capabilities (if any) of those stores. It is noteworthy that the SPARQL
1.1 working draft contains various entailment regimes'!. The standardisation of
inference in SPARQL is likely to increase support for it in triple stores and,
therefore, allow more powerful queries in general and for AutoSPARQL in par-
ticular.

Owverall: We introduced the QTL algorithm, which is the first algorithm to
induce SPARQL queries to the best of our knowledge. The AutoSPARQL inter-
face provides an active learning environment on top of QTL. As we argued in the
introduction, the key impact of AutoSPARQL is to provide a new alternative for
querying knowledge bases, which is complementary to existing techniques like
facet based browsing or visual query builders. We believe that AutoSPARQL is

" http://www.w3.org/TR/sparqlil-entailment/

AutoSPARQL 15

one of the first interfaces to flexibly let non-experts ask and refine non-trivial
queries against an RDF knowledge base.

References

1.

10.

11.

12.

13.

14.

15.

Renzo Angles and Claudio Gutierrez. The expressive power of SPARQL. In Amit P.
Sheth, Steffen Staab, Mike Dean, Massimo Paolucci, Diana Maynard, Timothy W.
Finin, and Krishnaprasad Thirunarayan, editors, International Semantic Web Con-
ference, volume 5318 of LNCS, pages 114-129. Springer, 2008.

Christopher H. Bryant, Stephen Muggleton, Stephen G. Oliver, Douglas B. Kell,
Philip G. K. Reiser, and Ross D. King. Combining inductive logic programming,
active learning and robotics to discover the function of genes. FElectron. Trans.
Artif. Intell., 5(B):1-36, 2001.

Philipp Cimiano, Sebastian Rudolph, and Helena Hartfiel. Computing intensional
answers to questions - an inductive logic programming approach. Data Knowl.
Eng., 69(3):261-278, 2010.

Lin Clark. Sparql views: A visual sparql query builder for drupal. In 9th Interna-
tional Semantic Web Conference (ISWC2010), November 2010.

C. M. Cumby and D. Roth. Learning with feature description logics. In S. Matwin
and C. Sammut, editors, Proceedings of the 12th International Conference on In-
ductive Logic Programming, volume 2583 of LNAI, pages 32-47. Springer-Verlag,
2003.

Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito. DL-FOIL concept learn-
ing in description logics. In Proceedings of the 18th International Conference on
Inductive Logic Programming, volume 5194 of LNCS, pages 107-121. Springer,
2008.

Luigi Iannone, Ignazio Palmisano, and Nicola Fanizzi. An algorithm based on
counterfactuals for concept learning in the semantic web. Applied Intelligence,
26(2):139-159, 2007.

Jorg-Uwe Kietz and Katharina Morik. A polynomial approach to the constructive
induction of structural knowledge. Machine Learning, 14:193-217, 1994.

Jens Lehmann. DL-Learner: learning concepts in description logics. Journal of
Machine Learning Research (JMLR), 10:2639-2642, 2009.

Jens Lehmann and Christoph Haase. Ideal downward refinement in the EL de-
scription logic. In Inductive Logic Programming, 19th International Conference,
ILP 2009, Leuven, Belgium, 2009.

Jens Lehmann and Pascal Hitzler. Concept learning in description logics using
refinement operators. Machine Learning journal, 78(1-2):203-250, 2010.

Stephen Muggleton, José Carlos Almeida Santos, and Alireza Tamaddoni-Nezhad.
Progolem: A system based on relative minimal generalisation. In Luc De Raedt,
editor, ILP, volume 5989 of LNCS, pages 131-148. Springer, 2009.

Shan-Hwei Nienhuys-Cheng and Ronald de Wolf, editors. Foundations of Inductive
Logic Programming, volume 1228 of LNCS. Springer, 1997.

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of
SPARQL. In Isabel F. Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel
Schwabe, Peter Mika, Michael Uschold, and Lora Aroyo, editors, International
Semantic Web Conference, volume 4273 of LNCS, pages 30—-43. Springer, 2006.
Burr Settles. Active learning literature survey. Computer Sciences Technical Re-
port 1648, University of Wisconsin-Madison, 2009.

