
Update Strategies for DBpedia Live

Claus Stadler+, Michael Martin*, Jens Lehmann*, and Sebastian Hellmann*

Universität Leipzig, Institut für Informatik, Johannisgasse 26,
D-04103 Leipzig, Germany,

+cstadler@informatik.uni-leipzig.de *{lastname}@informatik.uni-leipzig.de
http://aksw.org

Abstract. Wikipedia is one of the largest public information spaces
with a huge user community, which collaboratively works on the largest
online encyclopedia. Their users add or edit up to 150 thousand wiki
pages per day. The DBpedia project extracts RDF from Wikipedia and
interlinks it with other knowledge bases. In the DBpedia live extraction
mode, Wikipedia edits are instantly processed to update information in
DBpedia. Due to the high number of edits and the growth of Wikipedia,
the update process has to be very efficient and scalable. In this paper,
we present different strategies to tackle this challenging problem and
describe how we modified the DBpedia live extraction algorithm to work
more efficiently.

1 Introduction

The Linking Open Data (LOD) cloud continues to grow and contains various very
large knowledge bases. Many of those knowledge bases are extracted or derived
from other sources. Hence, they need to be synchronised to the original source in
order to reflect changes in it. This raises performance challenges, in particular if
the knowledge bases aim at a timely synchronisation. In this article, we describe
how we handle this challenge in the specific case of the DBpedia knowledge base.
We hope that this example can spur a broader discussion of this topic.

The DBpedia live extraction framework [5] extracts RDF data from articles
in the English Wikipedia1 with a delay of only a few seconds after they are
edited. In brief, the extraction proceeds as follows: When an article is modified,
the live extraction framework polls its latest revision via Wikipedia’s non public
OAIRepository. After that, a set of extractors are run which generate RDF
output for this Wikipedia page. Finally, this data is written into a publicly
accessible triple store where it can be accessed via Linked Data [3] and SPARQL
[9].

As the DBpedia store should only reflect the data extracted from the latest
revision of an article, a strategy for identifying and removing outdated triples
needs to be employed. In our case the triple management strategy needs to
respect two things: Firstly, the DBpedia live store is seeded with the DBpedia

1 http://en.wikipedia.org

dataset [6, 1] in version 3.4. The seeding is done in order to provide initial data
about articles that have not been edited since the start of the live extraction
process. As an effect, the extraction takes place on an existing dataset, which
not only contains data extracted from the english Wikipedia but also third party
datasets, amongst them YAGO[10], SKOS2, UMBEL3, and Open-Cyc4. On the
one hand the live extraction needs to keep the data of the third party datasets
intact. On the other hand when an article gets edited, its corresponding data in
the seeding dataset must be updated. Since all data resides in the same graph5,
this becomes a complex task. Secondly, the state of the extractors needs to be
taken into account. An extractor can be in one of the states Active, Purge, and
Keep which affects the generation and removal of triples as follows:

– Active The extractor is invoked on that page so that triples are generated.

– Purge The extractor is disabled and all triples previously generated by the
extractor for a that page should be removed from the store.

– Keep The extractor is disabled but previously generated triples for that page
should be retained.

Our initial strategy is as follows: Upon the first edit of an article seen by
the extraction framework a clean up is performed using the queries described
in Section 2.1. The clean up removes all but the static facts from the seeding
data set for the article’s corresponding resource. The new triples are then in-
serted together with annotations. Each triple is annotated with its extractor,
DBpedia URI and its date of extraction, using OWL 2 axiom annotations. Once
these annotations exist, they allow for simple subsequent deletions of all triples
corresponding to a certain page and extractor in the event of repeated article
edits.

As DBpedia consists of approximately 300 million facts, annotations would
boost this value by a factor of six6. As the amount of data in the store grew, we
soon realized that the update performance of the store became so slow that edits
on Wikipedia occurred more frequently than they could be processed. Before re-
sorting to acquire better hardware, we considered alternative triple management
approaches.

The paper is structured as follows: We describe the concepts for optimiz-
ing the update process in the Section 2. We also provide a short evaluation of
the performance improvement that was facilitated by the new deployed update
strategy in Section 3. We conclude and present related as well as future work in
the Section 4.

2 http://www.w3.org/TR/skos-reference/
3 http://www.umbel.org
4 http://www.opencyc.org
5 http://dbpedia.org
6 Three triples of the annotation vocabulary (omitting ?s rdf:type owl:Axiom), and

the three annotations (extractor, page, and extraction-date)

2 Concepts for Optimizing the Update Process

The extraction of changed facts in DBpedia, which have changed through edits
in Wikipedia, is described in [5]. After changed facts have been computed, the
DBpedia knowledge base has to be updated. The formerly used process for up-
dating the model with new information caused some performance problems as
described in Section 1. To optimize the update process, we sketch three strategies
as follows in this section.

– A specialized update process which uses a set of DBpedia-specific SPARUL
queries.

– An update process on the basis of multiple resource specific graphs
which uses separate graphs for each set of triples generated by an extractor
from an article.

– An RDB assisted update process which uses an additional relational
database table for storing temporarily affected RDF resources.

2.1 Specialized Update Process

As our generic solution using annotations turned out to be too slow, we chose to
use a domain specific one, in order to reduce the amount of explicit generated
metadata. As opposed to our initial approach which allows extractors to generate
arbitrary data, we now require the data to satisfy two constraints:

– All subjects of the triples extracted from an Wikipedia article must start with
the DBpedia URI corresponding to the article. If the subject is not equal
to the DBpedia URI, we call this a subresource. For instance, for the arti-
cle “London” both subjects dbpedia:London7 and dbpedia:London/prop1

would meet this naming constraint.

– Extractors must only generate triples whose predicates and/or objects are
specific to that extractor. For instance, the extractor for infoboxes would
be the only one to generate triples whose properties are in the http://

dbpedia.org/property/ namespace.

As a consequence, a triple’s subject and predicate implicitely uniquely deter-
mine the corresponding article and extractor. Whenever an article is modified,
the deletion procedure is as follows: As subresources are so far only generated by
the infobox extractor (when recursively extracting data from nested templates)
they can be deleted unless this extractor is in state keep. Th query for that task
is shown in Listing 1.1. Deletion of the main DBpedia article URIs is more com-
plex: Triples need to be filtered by the state of their generating extractor as well
as by their membership to the static part of DBpedia. This results in a complex
dynamically built query as sketched in Listing 1.2.

7 The prefix dbpedia stands for http://dbpedia.org/resource/.

Listing 1.1. Deleting all statements matching part of the URI of London
DELETE
FROM <http :// dbpedia.org > { ?sub ?p ?o . }
FROM <http :// dbpedia.org > {

<http :// dbpedia.org/resource/London > ?p ?sub .
?sub ?p ?o .
FILTER(REGEX(?sub , ’^http :// dbpedia.org/resource/London/’>) }

Listing 1.2. Deleting resources according to specific extractors while preventing
the deletion of the static part
DELETE
FROM <http :// dbpedia.org >
{ <http :// dbpedia.org/resource/London > ?p ?o . }
{ <http :// dbpedia.org/resource/London > ?p ?o .

Dynamically generated filters based on extractors in
active and purge state
FILTER(REGEX(?p, ’^http :// dbpedia.org/property/’) ||

?p = foaf:homepage ||
more conditions for other extractors

) .
Static filters preventing deletion of the static DBpedia part
FILTER ((?p != <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > ||

!(REGEX (?o, ’^http :// dbpedia.org/class/yago/’)) &&
more conditions for the static part

) .
}

2.2 Update Process with Resource Specific Graphs

The previously mentioned attempts have the disadvantage of either introducing
a high overhead with respect to the amount of triples needed to store meta
data or being very complex. A different approach is to put each set of triples
generated by an extractor from an article into its own graph. For instance a URI
containing a hash of the extractor and article name could serve as the graph
name. The update process then becomes greatly simplified as upon an edit, it is
only necessary to clear the corresponding graph and insert the new triples. This
approach requires splitting the seeding DBpedia dataset into separate graphs
from the beginning. As the DBpedia dataset v3.4 comes in separate files for each
extractor, the subjects of the triples in these files determine the target graph.
The downside of this approach is, that the data no longer resides in a single
graph. Therefore it is not possible to specify the dataset in the SPARQL FROM
clause. Instead, a FILTER over the graphs is required as show in Listing 1.3.

Listing 1.3. Selecting triples across multiple graphs.
SELECT ?s ?p ?o
{ GRAPH ?g {?s ?p ?o} .

FILTER(REGEX(?g, ’\^http :// dbpedia.org/’)) .
}

2.3 RDB Assisted Update Process

The third approach we evaluated and implemented is to use to store RDF state-
ments in a relational database (RDB) in addition. This approach is motivated

by the observation that most changes made to Wikipedia articles only cause
small changes in the corresponding RDF data. Therefore, the idea is to have
a method for quickly retrieving the set of triples previously generated for an
article, comparing it to the new set of triples and only performing the necessary
updates.

For selection of resources which have to be updated after a periodically fin-
ished Wikipedia extraction process, we firstly created an RDB table as illustrated
in Figure 1. Whenever a Wikipedia page is edited, the extraction method gener-

dbpedia_page

page_id

resource_uri

serialized_data

Fig. 1. Definition of the RDB table

ates a JSON object holding information about each extractor and its generated
triples. After serialization of such an object, it will be stored in combination with
the corresponding page identifier. In case a record with the same page identifier
already exists in this table, this old JSON object and the new one are being
compared. The results of this comparison are two disjoint sets of triples which
are used on the one hand for adding statements to the DBpedia RDF graph
and on the other hand for removing statements from this graph. Therefore the
update procedure becomes straight forward:

With this strategy, once the initial clean up for a page has been performed,
all further modifications to that page only trigger a simple update process. This
update process no longer involves complex SPARQL filters, instead it can modify
the affected triples directly.

Listing 1.4. SQL Statements for fetching data for a resource
SELECT data FROM dbpedia_page
WHERE page_id = h t t p :// dbpedia.org/resource/ L o n d o n ;

INSERT INTO dbpedia_page(page_id , data)
VALUES(h t t p :// dbpedia.org/resource/ L o n d o n , <JSON -Object >);

UPDATE dbpedia_page SET data = <JSON -Object > WHERE page_id = <pageId >

Listing 1.5. Simple SPARQL Delete and insert queries
Delete From <http :// dbpedia.org > { ... concrete triples ... }
Insert Into <http :// dbpedia.org > { ... concrete triples ... }

3 Evaluation of the RDB Assisted Update Process

We did a small evaluation by comparing the RDB assisted update process to
a simplified version of the DBpedia specific one. This simplified version deletes

Algorithm 1 Algorithm of the RDB assisted update process

//The data to be put into the store is included in the extractionResult
//object
pageId← extractionResult[pageId]
resourceUri← extractionResult[resourceUri]
newTriples← extractionResult[triples]

//Attempt to retrieve previously inserted data for the pageId
jsonObject← fetchFromSQLDB(pageId)
if jsonObject 6= NULL then

oldTriples← extractTriples(jsonObject)
insertSet← newTriples− oldTriples
removeSet← oldTriples− newTriples
removeTriplesFromRDFStore(removeSet)
addTriplesToRDFStore(insertSet)

else
cleanUpRDFStore(pageId)
insertIntoRDFStore(newTriples)

end if

jsonObject← generateJSONObject(pageId, resourceUri, newTriples)
putIntoSQLDB(jsonObject)

triples with a certain subject using 1.6 instead of 1.2. The difference is only that
the complex filter patterns were omitted.

Listing 1.6. Example of the simplified delete query
DELETE
FROM <http :// dbpedia.org >
{ <http :// dbpedia.org/resource/London > ?p ?o . }
{ <http :// dbpedia.org/resource/London > ?p ?o . }

The benchmark simulates edits of articles and was set up as follows. 5000
distinct resources were picked at random from the DBpedia dataset. For each
resource two sets O and N were created by randomly picking p% of the triples
whose subject starts with the resource. The sets O and N represent the sets of
triples corresponding to an article prior and posterior to an edit, respectively.
A run of the benchmark first clears the target graph and dbpedia_page table.
Then each resource’ O-set is inserted into the store. Finally the time to update
the old sets of triples to the new ones using either the simplified specialized
update strategy or the RDB assisted one8 is measured. Additionally the total
number of triples that were removed (O − N), added (N − O) and retained
(N ∩ O) were counted. Three runs were performed with p = 0.9, p = 0.8, and
p = 0.5 meaning that the simulated edits changed 10%, 20% and 50% of the
triples, respectively. We assume that the actual ratio of triples updated by the

8 As this approach involves a JSON object holding information about each extractor,
the generation of the sets O and N was related to a dummy extractor

live extraction process in the event of repeated edits of articles is between 10
and 20 percent. However the exact value has not been determined yet. The
benchmark was run on machine with a two core 1,2GHz Celeron CPU and 2GB
Ram. The triple store used was ”Virtuoso Open-Source Edition 6.1.1” in its
default configuration with four indices GS, SP, POGS, and OP.

p Added Removed Retained Strategy Time
taken
(sec)

0.5 124924 124937 123319 SQL 240
RDF 200

0.8 79605 79710 318149 SQL 200
RDF 250

0.9 44629 44554 402748 SQL 170
RDF 300

Table 1. Benchmark results.

In Table 1 the value SQL indiciates the RDB assisted approach, and RDF
the specialized one. As can be seen from the table, the former approach - which
reduces the updates to the triple store to a minimum - performs better than
specialized version when there is sufficient overlap between O and N (p = 0.8
and p = 0.9) On the other hand, the smaller the overlaps the more the RDB
becomes a bottleneck (p = 0.5). This is expected as in the worst case there is no
overlap between O and N . In this situation the specialized approach would delete
and reinsert triples directly. The RDB assisted approach would ultimatively do
the same; however with the overhead of additionally reading from and writing
to the dbpedia_page table.

4 Related Work, Future Work and Conclusion

In this paper we sketched four different approaches for managing triples in the
context of the DBpedia live extraction: The first based on OWL 2 annotations,
the second using domain specific queries, the third using individual graphs and
the fourth being assisted by an RDB. Initially because of RDFs flexibility we
were tempted to find a solution which operates on the triple store alone. In
regard to the RDB assisted approach we were sceptical as it meant having to
duplicate every single triple. The lesson learnt is that for application scenarios
involving frequent minor updates of resources in a triple store, an RDB assisted
approach may be advantageous - despite the implied data duplication.

Related Work Apart from the strategies described in this article, there are a
number other ways to improve the performance of synchronising a knowledge

base to its original source: The first and most obvious challenge in research
and practice is to further improve performance of triple stores, in particular for
SPARUL queries. Although the Berlin SPARQL Benchmark[4] (BSBM) became
a reference for measuring the query performance of SPARQL endpoints, up to
now there is no such benchmark playing a comparable role for SPARUL. Another
method is to avoid decoupling the original source and the generated knowledge
base. For instance, the Triplify tool[2] is a thin layer above a relational database.
An RDF representation is generated by SQL queries augmented with syntactic
sugar. This lightweight integration does not require a synchonisation process
(of course, it could be that a mirror of the original source needs to be kept
in sync). However, it is usually preferable only for simple extraction processes,
otherwise the burden to generate an RDF presentation in real time becomes
computationally very expensive. Furthermore, complex transformations of the
original source, as present in the DBpedia extraction framework, are difficult to
handle.

Future Work For improving the performance of the DBpedia Navigator [7] we
will integrate an adaptive SPARQL query cache [8] as a proxy layer on top
of the DBpedia SPARQL Endpoint. This caching solution analyses the triple
patterns of the SPARQL queries and stores them in combination with their
result sets. To trigger the invalidation process of the cache proxy, all added
and updated statements, which are committed to the RDF store, have to be
committed to the cache proxy as well. The invalidation process of this cache
proxy works very selectively and invalidates only those cache objects whose
aggregated triple pattern matches the added or updated statements. However,
an invalidation process is an expensive process and should only be triggered if
necessary. The deployment of strategies presented in this paper are contributed
to reduce the change sets of statements for the DBpedia update process. However
they contribute as well to the cache proxy as the amount of statements that must
be considered in the invalidation process is minimized.

References

1. Sören Auer, Chris Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and
Zachary Ives. DBpedia: A nucleus for a web of open data. In Proceedings of the 6th
International Semantic Web Conference (ISWC), volume 4825 of Lecture Notes in
Computer Science, pages 722–735. Springer, 2008.

2. Sören Auer, Sebastian Dietzold, Jens Lehmann, Sebastian Hellmann, and David
Aumueller. Triplify: light-weight linked data publication from relational databases.
In Juan Quemada, Gonzalo León, Yoëlle S. Maarek, and Wolfgang Nejdl, editors,
Proceedings of the 18th International Conference on World Wide Web, WWW
2009, Madrid, Spain, April 20-24, 2009, pages 621–630. ACM, 2009.

3. Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story so far.
International Journal on Semantic Web and Information Systems (IJSWIS), 2009.

4. Christian Bizer and Andreas Schultz. The berlin sparql benchmark. Int. J. Se-
mantic Web Inf. Syst., 5(2):1–24, 2009.

5. Sebastian Hellmann, Claus Stadler, Jens Lehmann, and Sören Auer. DBpedia live
extraction. In Proc. of 8th International Conference on Ontologies, DataBases, and
Applications of Semantics (ODBASE), volume 5871 of Lecture Notes in Computer
Science, pages 1209–1223, 2009.

6. Jens Lehmann, Chris Bizer, Georgi Kobilarov, Sören Auer, Christian Becker,
Richard Cyganiak, and Sebastian Hellmann. DBpedia - a crystallization point
for the web of data. Journal of Web Semantics, 7(3):154–165, 2009.

7. Jens Lehmann and Sebastian Knappe. DBpedia navigator. Semantic Web Chal-
lenge, International Semantic Web Conference 2008, 2008.

8. Michael Martin, Jörg Unbehauen, and Sören Auer. Improving the performance of
semantic web applications with SPARQL query caching. In Proceedings of 7th Ex-
tended Semantic Web Conference (ESWC 2010), 30 May – 3 June 2010, Heraklion,
Greece, 2010.

9. Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for RDF.
W3C Recommendation, 2008. http://www.w3.org/TR/rdf-sparql-query.

10. Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A Core of
Semantic Knowledge. In 16th international World Wide Web conference (WWW
2007), New York, NY, USA, 2007. ACM Press.

