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Abstract

With the proliferation of the Semantic Web,
there has been a rapidly rising interest in de-
scription logics, which form the logical foun-
dation of the W3C standard ontology lan-
guage OWL. While the number of OWL
knowledge bases grows, there is an increas-
ing demand for tools assisting knowledge en-
gineers in building up and maintaining their
structure. For this purpose, concept learn-
ing algorithms based on refinement operators
have been investigated. In this paper, we pro-
vide an ideal refinement operator for the pop-
ular description logic EL and show that it is
computationally feasible on large knowledge
bases.

1. Introduction

The Semantic Web is steadily growing1 and contains
knowledge from diverse areas such as science, music,
people, books, reviews, places, politics, products, soft-
ware, social networks, as well as upper and general
ontologies. The underlying technologies, sometimes
called Semantic Technologies, are currently starting to
create substantial industrial impact in application sce-
narios on and off the web, including knowledge man-
agement, expert systems, web services, e-commerce,
e-collaboration, etc. Since 2004, the Web Ontology
Language OWL, which is based on description logics
(DLs), has been the W3C-recommended standard for
Semantic Web knowledge representation and is a key
to the growth of the Semantic Web.

However, recent progress in the field faces a lack of
well-structured ontologies with large amounts of in-
stance data due to the fact that engineering such on-
tologies constitutes a considerable investment of re-
sources. Nowadays, knowledge bases often provide
large amounts of instance data without sophisticated

1As a rough size estimate, the semantic index Sindice
(http://sindice.com/) lists more than 10 billion entities
from more than 100 million web pages.

schemata. Methods for automated schema acquisi-
tion and maintenance are therefore being sought (see
e.g. (Buitelaar et al., 2007)). In particular, concept
learning methods have attracted interest, see e.g. (Es-
posito et al., 2004; Baader et al., 2007; Lehmann, 2007;
Lehmann & Hitzler, 2008b).

Many concept learning methods borrow ideas from
Inductive Logic Programming including the use of
refinement operators. Properties like ideality, com-
pleteness, finiteness, properness, minimality, and non-
redundancy are used as theoretical criteria for the
suitability of such operators. It has been shown in
(Lehmann & Hitzler, 2008a) that no ideal refinement
operator for DLs such as ALC, SHOIN , and SROIQ
can exist (the two latter DLs are underlying OWL and
OWL 2, respectively). In this article, an important
gap in the the analysis of refinement operator proper-
ties is closed by showing that ideal refinement opera-
tors for the DL EL do exist, which in turn can lead to
a breakthrough in DL concept learning.

EL is a light-weight DL, but despite its limited ex-
pressive power it has proven to be of practical use in
many real-world large-scale applications, e.g. the Sys-
tematized Nomenclature of Medicine Clinical Terms
(Snomed CT) (Bodenreider et al., 2007) and the
Gene Ontology (The Gene Ontology Consortium,
2000). Since standard reasoning in EL is polynomial,
it is suitable for large ontologies. It should furthermore
be mentioned that EL++, an extension of EL, will be-
come one of three profiles in the upcoming standard
ontology language OWL 2.

Overall, we make the following contributions:

• A gap in the research of properties of refinement
operators in DLs is being closed.

• An ideal and practically useful refinement opera-
tor for EL is developed.

• Computational feasibility of the operator is
shown.

In Section 2, we describe the preliminaries of our work
and present the refinement operator in Section 3. We
prove its ideality and describe how it can be optimised
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to work efficiently and incorporate background knowl-
edge. We evaluate the operator on real-world knowl-
edge bases in Section 4. Related work is described in
Section 5 and conclusions are drawn in Section 6.

2. Preliminaries

In this section, the definitions relevant for defining the
refinement operator in Section 3 are being introduced.
Besides recalling known facts from the literature, we
introduce minimal EL trees that serve as the basis for
the refinement operator.

2.1. The EL Description Logic

Before we begin to introduce the DL EL, we briefly
recall some notions from order theory. Let Q be a set
and � a quasi order on Q, i.e., a reflexive and tran-
sitive binary relation on Q. Then (Q,�) is called a
quasi ordered space. The quasi order � induces the
equivalence relation ' and the strict quasi order ≺
on Q: q ' q′ iff q � q′ and q′ � q, and q ≺ q′ iff
q � q′ and q 6' q′. For P ⊆ Q, sup(P ) := {p ∈ P |
there is no p′ ∈ P width p ≺ p′} defines the supre-
mum of P . We say (Q,�) has a greatest element iff
there is a q∗ ∈ Q such that sup(Q) := {q∗}.

The expressions in the DL EL are concepts, which are
built inductively starting from sets of concepts names
NC and role names NR of arbitrary but finite cardi-
nality, and applying the concept constructors > (top),
C uD (conjunction) and ∃r.C (existential restriction).
By C(EL) we denote the set of all EL concepts. The
semantics of an EL concept C is given in terms of
an interpretation I = (∆I , ·I), where ∆I is a set
called the interpretation domain and ·I is the inter-
pretation function. The interpretation function maps
each A ∈ NC to a subset of ∆I , and each r ∈ NR
to a binary relation on ∆I . It is then inductively
extended to arbitrary EL concepts as >I := ∆I ,
(C u D)I := CI ∩ DI and (∃r.C)I := {x ∈ ∆I |
there is y ∈ CI with (x, y) ∈ rI}. Subsequently, we
will use A,B to identify concept names from NC ; C,D
for EL concepts; and r, s for role names from NR. By
|C| we denote the size of an EL concept, which is just
the number of symbols used to write it down. When
proving properties of EL concepts, the role depth of a
concept C is a useful induction argument. It is defined
by structural induction as rdepth(A) = rdepth(>) :=
0, rdepth(C u D) := max(rdepth(C), rdepth(D)) and
rdepth(∃r.C) := rdepth(C)+1. In this paper, an (EL)-
knowledge base K is a finite union of concept inclu-
sion axioms of the form A @ B, role inclusion axioms
r @ s, disjointness axioms A u B ≡ ⊥, domain re-
striction axioms domain(r) = A, and range restriction

axioms range(r) = A. In the last two axioms, A ∈ NR
and we assume w.l.o.g. that there is such an axiom
for every r ∈ NR. An interpretation I is a model of a
knowledge base K iff for each A @ B ∈ K, AI ⊂ BI ;
r @ s ∈ K, rI ⊂ sI ; A u B ≡ ⊥, AI ∩ BI = ∅;
domain(r) = A ∈ K, x ∈ AI for all (x, y) ∈ rI ; and
for each range(r) = A ∈ K, y ∈ AI for all (x, y) ∈ rI .
Given a knowledge base K and EL concepts C,D, C
is subsumed by D w.r.t. K (C vK D) iff CI ⊆ DI

for all models I of K. In the remainder of this pa-
per, we always assume a knowledge base to be im-
plicitly present, and we therefore just write C v D.
It is important to mention that we can incorporate L-
knowledge bases K′ that are defined using a DL L that
is more expressive than EL by restricting K to be the
EL fragment of K′2. Moreover, we assume in the fol-
lowing that the EL-knowledge base K is precomputed,
and reasoning in K is in polynomial time. Obviously,
(C(EL),v) forms a quasi ordered space, from which we
can accordingly derive the relations ≡ (equivalence)
and @ (strict subsumption). Given finite sets of con-
cept names A,B ⊆ NC , A v B iff for every B ∈ B
there is some A ∈ A such that A v B. We sometimes
abuse notation and write A v A instead of A v {A}.
An EL concept C is satisfiable w.r.t. K iff there exists
a model I of K such that CI 6= ∅.
Example 2.1 Let NC = {Human, Animal, Bird, Cat},
NR = {has, has child, has pet}, K =
{has pet @ has, has child @ has, Bird @ Animal,
Cat @ Animal}, C = Human u ∃has.>, and
D = Human u ∃has child.Human u ∃has pet.Bird.
Then we can infer D v C. �

2.2. Downward Refinement Operators

Refinement operators are used to structure a search
process for concepts. Intuitively, downward refinement
operators construct specialisations of hypotheses. This
idea is well-known in Inductive Logic Programming
(Nienhuys-Cheng & de Wolf, 1997). Let (Q,�) be a
quasi ordered space and denote by P(Q) the powerset
of Q. A mapping ρ : Q→ P(Q) is a downward refine-
ment operator on (Q,�) iff q′ ∈ ρ(q) implies q′ � q.
In the remainder of this paper, we will call downward
refinement operators just refinement operators. We
write q  ρ q

′ for q′ ∈ ρ(q) and drop the index ρ if
the refinement operator is clear from the context. A
refinement chain of length n of a refinement opera-
tor ρ that starts in q1 and ends in qn is a sequence
q1  . . .  qn such that qi  qi+1 for 1 ≤ i < n. We
say that the chain goes through q iff q ∈ {q1, . . . , qn}.
Moreover, q  ∗ q′ iff there exists a refinement chain

2By this restriction, we mean that every model of K′ is
also a model of K, but not necessarily vice versa.



Ideal Downward Refinement in the EL Description Logic

of length n starting from q and ending in q′ for some
n ∈ N.

Refinement operators can be classified by means of
their properties. Let (Q,�) be a quasi ordered space
with a greatest element, and q, q′, q′′ ∈ Q. A refine-
ment operator ρ is finite iff ρ(q) is finite for any q. It
is proper iff q  q′ implies q 6≡ q′. We call ρ complete
iff q′ ≺ q implies q  ∗ q′′ for some q′′ ≡ q′. Let q∗ be
the greatest element in (Q,�), ρ is weakly complete iff
for any q′ ≺ q∗, q∗  ∗ q′′ with q′′ ≡ q′. ρ is redundant
iff q∗  ∗ q′ via two refinement chains, where one goes
through a an element q′′ and the other one does not
go through q′′. Finally, ρ is ideal iff it is finite, proper
and complete.

2.3. Minimal EL Concepts

An important observation is that EL concepts can be
viewed as directed labeled trees (Baader et al., 1999).
This allows for deciding subsumption between con-
cepts in terms of the existence of a simulation relation
between the nodes of their corresponding trees, and
moreover for a canonical representation of concepts as
minimal EL trees.

An EL graph is a directed labeled graph G = (V,E, `),
where V is the finite set of nodes, E ⊆ V×NR×V is the
set of edges, and ` : V → P(NC) is the labeling func-
tion. We define V (G) := V , E(G) := E, `(G) := ` and
|G| := |V |. For an edge (v, r, w) ∈ E, we call w an (r-
)successor of v, and v an (r-)predecessor of w. Given a
node v ∈ V , a labelling function ` and L ⊆ NC , we de-
fine `[v → L] as `[v 7→ L](v) := L and `[v 7→ L](w) :=
`(w) for all w 6= v. Given G and v ∈ V (G), we de-
fine G[v 7→ L] := (V (G), E(G), `(G)[v 7→ L]). We say
v1

r1−→ . . .
rn−→ vn+1 is a path of length n from v1 to

vn+1 inG iff (vi, ri, vi+1) ∈ E for 1 ≤ i ≤ n. A graphG
contains a cycle iff there is a path v r1−→ . . .

rn−→ v in G.
A concept is represented by an EL concept tree, which
is a connected finite EL graph t that does not contain
any cycle, has a distinguished node called the root of t
that has no predecessor, and every other node has ex-
actly one predecessor along exactly one edge. The set
of EL concept trees is denoted by T . In the following,
we call an EL concept tree just a tree. Figure 3.1 illus-
trates some examples of such trees. Given a tree t, we
denote by root(t) its root. The tree t corresponding to
a concept C is defined by induction on n = rdepth(C).
For n = 0, t consists of a single node that is labelled
with all concepts names occurring in C. For n > 0, the
root of t is labelled with all concept names occurring
on the top-level of C. Furthermore, for each existen-
tial restriction ∃r.D on the top-level of C, it has an
r-labelled edge to the root of a subtree of t′ which cor-

responds to D. As an example, the tree t correspond-
ing to A1u∃r.A2 is t = ({v1, v2}, {(v1, r, v2)}, `) where
` maps v1 to {A1} and v2 to {A2}. By tC we denote
the tree corresponding to C. Obviously, the transfor-
mation from a concept to a tree can be performed in
linear time w.r.t. the size of the concept. Similarly, any
tree has a corresponding concept3, and the transforma-
tion can be performed in linear time, too. We say t is
satisfiable iff the concept C corresponding to t is satis-
fiable. Let t, t′ be trees, v ∈ V (t) and assume w.l.o.g.
that V (t) ∩ V (t′) = ∅. Denote by t[v ← (r, t)] the tree
(V (t) ∪ V (t′), E(t) ∪ E(t′) ∪ {(v, r, root(t′))}, ` ∪ `′),
where ` ∪ `′ is the obvious join of the labeling func-
tions of t and t′. By t(v) we denote the subtree at
v. Let C be a concept and t the tree correspond-
ing to C. We define depth(t) := rdepth(C), and for
v ∈ V (t), level(v) := depth(t) − depth(t(v)). More-
over, onlevel(t, n) is the set of nodes {v | level(v) = n}
that appear on level n.
Definition 2.2 Let t = (V,E, `), t′ = (V ′, E′, `′) be
trees. A simulation relation from t′ to t is a binary re-
lation S ⊆ V ×V ′ such that (root(t), root(t′)) ∈ S and
if (v, v′) ∈ S then the following simulation conditions
are fulfilled:

(SC1) `(v) v `′(v′)

(SC2) for every (v′, r, w′) ∈ E′ there is (v, r, w) ∈ E1

such that r v r′ and (w,w′) ∈ S �

We write t � t′ if there exists a simulation relation S
from t′ to t. It is easily checked that (T,�) forms a
quasi ordered space, and we derive the relations ' and
≺ accordingly. A simulation S from t′ to t is maximal
if for every simulation S ′ from t′ to t, S ′ ⊆ S. It is
not hard to check that S is unique. Using a dynamic
programming approach, it can be computed in O(|t| ·
|t′|). The following lemma is proven by induction on
rdepth(D). It allows us to decide subsumption between
concepts C,D in terms of the existence of a simulation
between their corresponding trees t, t′.
Lemma 2.3 Let C,D be concept with their corre-
sponding trees t, t′. Then C v D iff t � t′.

The previous lemma allows us to interchange con-
cepts and their corresponding trees, and the refine-
ment operator presented in the next section will work
on trees rather than concepts. We now introduce min-
imal EL trees which serve as a canonical representa-
tion of equivalent EL concepts. A similar topic, the
minimization of XPath tree pattern queries, has been
investigated in (Ramanan, 2002). In fact, EL trees
generalize XPath tree pattern queries, and the relevant

3Strictly speaking, t has a set of corresponding concepts,
which are all equivalent up to commutativity.
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algorithms carry over straightforwardly to EL trees.

Definition 2.4 Let t = (V,E, `) be a tree. We call
t label reduced if for all v ∈ V there does not ex-
ist B ⊆ NC such that |B| < |`(v)| and A ≡ B.
Moreover, t contains redundant subtrees if there are
(v, r, w), (v, r′, w′) ∈ E with w 6= w′, r v r′ and
t(w) � t(w′). We call t minimal if t is label reduced
and does not contain redundant subtrees. �

It follows that minimality of a tree t can be checked in
O(|t|2) by computing the maximal simulation from t
to t and then checking for each v ∈ V (t) whether v is
label reduced and, using S, whether v is not the root
of redundant subtrees. The set of minimal EL trees
is denoted by Tmin . We close this section with two
lemmas that will be helpful in the next section.

Lemma 2.5 Let Tn be the set of minimal EL trees up
to depth n ≥ 0. Then |Tn| is finite.

Lemma 2.6 Given trees t, t′ with depth(t′) <
depth(t). Then t′ 6� t.

3. An Ideal EL Refinement Operator

In this section, we define an ideal refinement operator.
In the first part, we are more concerned with a descrip-
tion of the operator on an abstract level, which allows
us to prove its properties. The next part addresses op-
timisations of the operator that make it more usable
in practice.

3.1. Definition of the Operator

For simplicity, we subsequently assume the knowledge
base to only contain concept and role inclusion axioms.
We will sketch in the next section how the remaining
restriction axioms can be incorporated in the refine-
ment operator.

The refinement operator ρ, to be defined below, is a
function that maps a tree t ∈ Tmin to a subset of
Tmin . It can be divided into the three base oper-
ations label extension, label refinement and edge re-
finement. Building up on that, the complex opera-
tion attach subtree is defined. Each such operation
takes a tree t ∈ Tmin and a node v ∈ V (t) as in-
put and returns a set of trees that are refined at node
v. In order to provide a definition of the base opera-
tions, we introduce the function sh↓ which —roughly
speaking— allows us to “climb down” the subsump-
tion hierarchy under some constraints. Let A ⊆ NC
and B ⊆ NC ∪ {>}, sh↓(A,B) = sup{A ∈ NC |
A 6v A and there is exactly one B ∈ B such that A @
B}. For example, let NC = {A1, A2, A3, A4} and
K = {A2 @ A1, A3 @ A1}. Then sh↓({A2}, {>}) =

Algorithm 1 Computation of the set as(t, v)
T := ∅; M := {(t>, NR)};
while M 6= ∅ do

choose and remove (t′,R) ∈M;
R′ := sup(R); R′′ := ∅;

5: while R′ 6= ∅ do
choose and remove r ∈ R′;
t′′ := t[v ← (r, t′)]; w := root(t′);
if t′′ is minimal then
T := T ∪ {t′′};

10: else
for all (v, r′, w′) ∈ E(t′′) with w 6= w′ and
r v r′ do

if t′′(w) � t′′(w′) then
nextwhile;

end if
15: end for

R′ := R′ ∪ (sh↓(r) ∩R); R′′ := R′′ ∪ {r};
end if

end while
M :=M∪ {(t∗,R′′) | t∗ ∈ ρ(t′),R′′ 6= ∅};

20: end while
return T ;

{A3, A4} and sh↓(∅, {A1, A4}) = {A2, A3}. Likewise,
we define sh↓ on role names from NR: sh↓(r) :=
sup{s ∈ NR | s @ r}. The base operations are as
follows: the operation e`(t, v) returns the set of those
minimal satisfiable trees that are derived from t by ex-
tending the label of v. Likewise, r`(t, v) is the set of
trees obtained from t by refining the label of v. Last,
re(t, v) is obtained from t by refining any of the out-
going edges at v. Formally,

• e`(t, v): t′ ∈ e`(t, v) iff t′ ∈ Tmin and

t′ = t[v 7→ `(v) ∪ {A}] for A ∈ sh↓(`(v), {>})}

• r`(t, v): t ∈ r`(t, v) iff t′ ∈ Tmin and

t′ = t[v 7→ (`(v)∪{A})\sh↑(A)] for A ∈ sh↓(∅, `(v))

• re(t, v):t′ ∈ re(t, v) iff t′ ∈ Tmin and t′ =
(V,E′, `), where E′ = E \ {(v, r, w)} ∪ {(v, r′, w)}
for some (v, r, w) ∈ E and r′ ∈ sh↓(r)

The crucial part of the refinement operator is the at-
tach subtree operation, which is defined by Algorithm
1. The set as(t, v) consists of minimal trees obtained
from t that have an extra subtree attached to v. It re-
cursively calls the refinement operator ρ and we there-
fore give its definition before we explain as(t, v) in
more detail.
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Definition 3.1 The refinement operator ρ : Tmin →
P(Tmin) is defined as:

ρ(t) :=
⋃

v∈V (t)

(e`(t, v) ∪ r`(t, v) ∪ re(t, v) ∪ as(t, v))

New edges for an input tree are introduced by as. For
t ∈ Tmin and v ∈ V , as(t, v) keeps a set of output trees
T and a setM of candidates which are tuples consist-
ing of a minimal satisfiable EL tree and a set of role
names. Within the first while loop, an element (t′,R)
is removed fromM. The setR′ is initialized to contain
the greatest elements of R, and R′′ is initially empty
and will later contain role names that need further
inspection. In the second while loop, the algorithm it-
erates over all role names r in R′. First, the tree t′′ is
constructed from t by attaching the subtree (v, r, w) to
v, where w is the root of t′. It is then checked whether
t′′ is minimal. If this is the case, t′′ is a refinement
of t and is added to T . Otherwise there are two rea-
sons why t′′ is not minimal: Either the newly attached
subtree is subsumed by some other subtree of t, or the
newly attached subtree subsumes some other subtree
of t. The latter case is checked in Line 11, and if it
applies the algorithm skips the loop. This prevents the
algorithm from running into an infinite loop, since we
would not be able to refine t′ until t′′ becomes a min-
imal tree. Otherwise in the former case, we proceed
in two directions. First, sh↓(r) is added to R′, so it
can be checked in the next round of the second while
loop whether t′ attached via some r′ ∈ sh↓(r) ∩ R to
v yields a refinement. Second, we add r to R′′, which
can be seen as “remembering” that r did not yield a
refinement in connection with t′. Finally, once R′ is
empty, in Line 19 we add all tupels (t∗,R′′) to M,
where t∗ is obtained by recursively calling ρ on t′.
Example 3.2 Figure 3.1 depicts the set ρ(Human u
∃has.Animal) w.r.t. K from Example 2.1. �

Proposition 3.3 ρ is a is a finite, proper and weakly
complete downward refinement operator on (Tmin ,�).

Proof In the following, let t ∈ Tmin and v ∈ V (t).

First, it is easily seen that ρ is a downward refinement
operator. Every operation of ρ adds a label or a sub-
tree to a node v, or replaces a label or edge-label by a
refined label or edge respectively. Hence, t′ � t for all
t′ ∈ ρ(t).

Regarding finiteness of ρ, Lemma 2.5 guarantees that
there is only a finite number of minimal EL trees up
to a fixed depth. It follows from Lemma 2.6 that for
a given tree t, ρ(t) only consists of trees of depth at
most depth(t) + 1. Hence, ρ(t) is finite.

In order to prove properness of ρ, it is sufficient to show

t 6� t′ for t′ ∈ ρ(t). To the contrary, assume t � t′ and
that t has been refined at v. Let S be a simulation from
t′ to t. Since v has been refined, it is not hard to show
that (v, v) 6∈ S. We have that S is a simulation, so
there must be some v′ ∈ V (t) with level(v′) = level(v)
such that (v′, v) ∈ S. This implies that there is a
simulation S ′ on t′ with {(v′, v), (v, v)} ⊆ S ′. It follows
that t′ contains a redundant subtree at the predecessor
of v, contradicting to the minimality of t′.

Regarding weakly completeness, let depth(t) ≤ n. We
show that t is reachable from t> by nested induction
on n and m := |{(root(t), r, w) ∈ E(t)}|. For the in-
duction base case n = 0,m = 0, t is just a single
node labeled with some concept names. It is easily
seen that by repeatedly applying e`(t, v) and r`(t, v)
to this node we eventually reach t. For the induc-
tion step, let n > 0,m > 0. Hence, t is a tree with
m successor nodes w1, . . . , wm attached along edges
r1, . . . , rm to t. By the induction hypothesis, the tree
tm−1, which is obtained from t by removing the sub-
tree t(w1) from t, is reachable from t> and denote by
θ the corresponding refinement chain. Consequently,
we have t′ = tm−1[v ← (r′, t′w1

)] ∈ as(tm, v) for some
tree t′w1

occurring in θ and r1 v r′1. Note that no in-
termediate tree in the refinement chain from t> to t′1
is dropped in Line 13 of as due to the minimality of t
and the fact that t(w1) � t′w1

. Now by first repeatedly
applying the remaining refinement steps from θ to t′

and then repeatedly refining r′1 with re(t, v), we reach
a tree tm. �

Still, ρ is not ideal, since it is not complete. It is
however easy to derive a complete operator ρ∗ from ρ:

ρ∗(t) := sup{t′ | t>  ∗ρ t′, t′ ≺ t and
depth(t′) ≤ depth(t) + 1}.

This construction is needed, because we would for ex-
ample not be able to reach ∃r.(A1 uA2) starting from
∃r.A1 u ∃r.A2 with ρ.
Theorem 3.4 The EL downward refinement operator
ρ∗ is ideal.

In (Lehmann & Hitzler, 2008a) it has been shown
for languages other than EL that complete and non-
redundant refinement operators do not exist under a
mild assumption. It is also not hard to show that ρ
has to be redundant in our setting:
Proposition 3.5 Let ψ : Tmin → P(Tmin) be a com-
plete refinement operator. Then ψ is redundant.

3.2. Optimisations

We used two different kinds of optimisations: The first
is concerned with the performance of minimality tests



Ideal Downward Refinement in the EL Description Logic
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Figure 1. The set ρ(Human u ∃has.Animal) of minimal satisfiable trees w.r.t. the knowledge-base K from Example 2.1.

and the second reduces the number of trees returned
by ρ by incorporating more background knowledge.

Recall from Section 2.3 that checking for minimality
of a tree t involves computing a maximal simulation S
on V (t) and is in O(|t|2). In order to avoid expensive
re-computations of S after each refinement step, the
data-structure of t is extended such that sets C←1 (v),
C→1 (v), C←2 (v) and C→2 (v) are attached to every node
v ∈ V (t). Here, the set C←1 (v) contains those nodes w
such that (SC1) holds for (v, w) according to Definition
2.2. Likewise, C→2 (v) is the set of those nodes w such
that (SC2) holds for (w, v), and C←1 (v) and C→2 (w) are
defined accordingly. When checking for minimality, it
is moreover sufficient that each such set is restricted to
only consist of nodes from onlevel(v) excluding v itself.
This fragmentation of S allows us to perform local up-
dates instead of re-computation of S after an operation
is performed on v. For example, when the label of v is
extended, we only need to recompute C←1 (v), update
C→1 (w) for every w ∈ C←1 (v), and then repeatedly up-
date C→2 (v′) and C←2 (v′) for every predecessor node v′

of an updated node until we reach the root of t. This
method saves a considerable amount of computation,
since the number of nodes affected by an operation is
empirically relatively small.

In order to keep |ρ(t)| small, we use role domains and
ranges as well as disjoint concepts inferred from K.
The domain restriction axioms can be used to reduce
the set of role names considered when adding a sub-
tree or refining an edge: For instance, let w be a
node, (v, r, w) the edge pointing to w, and range(r) =
A. When adding an edge (w, s, u), we ensure that
range(r) u domain(s) is satisfiable. This ensures that
only compatible roles are combined. Similar effects
are achieved by mode declarations in ILP tools. How-
ever, in OWL ontologies role domains and ranges are
usually already present and hence do not need to be
added manually. Similar optimisations can be applied
to edge refinement. In as(t, v), we furthermore use

range restrictions to automatically label a new node
with the corresponding role range. For example, if the
edge has label r and range(r) = A, then the new node
w is assigned label `(w) = {A} (instead of `(w) = ∅).

We now address the optimisation of extending node
labels (function e`). Let A be a concept name for
which we want to know whether to add it to `(v). We
first check A v `(v). If yes, we discard A since we
could reach an equivalent concept by refining a con-
cept in `(v), i.e. we perform redundancy reduction. Let
(u, r, v) be the edge pointing to v and range(r) = B.
We verify that A u B is satisfiable and discard A
otherwise. Additionally as before, we test whether
`(v) v A. If yes, then A is also discarded, because
adding it would not result in a proper refinement. Per-
forming the last step in a top down manner, i.e. start
with the most general concepts A in the class hierar-
chy, ensures that we compute the supremum of eligible
concepts, which can be added to `(v). In summary, we
make sure that the tree we obtain is label reduced, and
perform an on-the-fly test for satisfiability. Applying
similar ideas to the case of label refinement is straight
forward. In practice, the techniques described here
narrow the set of trees returned in a refinement step
significantly by ruling out concepts, which are unsat-
isfiable w.r.t. K or which can also be reached via other
refinement chains. This is is illustrated by the follow-
ing example.

Example 3.6 Let K be as in Example 2.1 and
define K′ := K ∪ {domain(has pet) = Animal,
domain(has child) = Human, range(has child) =
Human, Human u Animal ≡ ⊥}. By incorporat-
ing the additional axioms, ρ(Human u ∃has.Animal)
only contains the trees on the right-hand side of
the dashed line in Figure 3.1, except for Human u
∃has child.>u∃has.Animal, which becomes Humanu
∃has child.Human u ∃has.Animal due to the range of
has child. �
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name logical classes roles ρ av. time ρ per ref. reasoning refinements ref. size
axioms (in ms) (in ms) time (%) av. max. av. max.

Genes 42656 26225 4 167.2 0.14 68.4 1161.5 2317 5.0 8
CTON 33203 17033 43 76.2 0.08 5.1 220.2 28761 5.8 24
Galen 4940 2748 413 3.5 0.21 37.1 17.0 346 4.9 16
Process 2578 1537 102 193.6 0.16 27.2 986.5 23012 5.7 22
Transport 1157 445 89 164.4 0.09 5.9 985.2 22651 5.7 24
Earthrealm 931 559 81 407.4 0.17 23.2 1710.3 27163 5.7 19
Tambis 595 395 100 141.6 0.09 1.5 642.4 26685 5.8 23

Table 1. Benchmark results on ontologies from the TONES repository. The results show that ρ works well even on large
knowledge bases. The time needed to compute a refinement is below one millisecond and does not show large variations.

4. Evaluation of the Operator

To evaluate the operator, we computed random re-
finement chains of ρ. A random refinement chain is
obtained by applying ρ to >, choosing one of the re-
finements uniformly at random, then applying ρ to this
refinement etc.

To asses the performance of the operator, we tested
it on real ontologies chosen from the TONES reposi-
tory4, including some of the most complex OWL on-
tologies. We generated 100 random refinement chains
of length 8 and measured the results. We found exper-
imentally that this allows us to evaluate the refinement
operator on a diverse set of concept trees. The tests
were run on an Athlon XP 4200+ (dual core 2.2 GHz)
with 4 GB RAM. As a reasoner we used Pellet 1.5.
The benchmarks do not include the time to load the
ontology into the reasoner and classify it.

The results are shown in Table 1. The first four
columns contain the name and relevant statistics of
the ontology considered. The next column shows the
average time the operator needed on each input con-
cept. In the following column this value is divided by
the number of refinements of the input concept. The
subsequent column shows how much time is spend on
reasoning during the computation of refinements. The
two last columns contain the number of refinements
obtained and their size. Here, we measure size as the
number of nodes in a concept tree plus the sum of the
cardinality of all node labels.

The most interesting insight from Table 1 is that de-
spite the different size and complexity of the ontolo-
gies, the time needed to compute a refinement is low
and does not show large variations (between 0.09 and
0.21 ms). This indicates that the operator scales well
to large knowledge bases. It can also be observed that
the number of refinements can be very high in cer-
tain cases, which is due to the large number of classes

4http://owl.cs.manchester.ac.uk/repository/

and properties in many ontologies and the absence of
explicit or implicit disjointness between classes. We
want to note that when the operator is used to learn
concepts from instances (standard learning task), one
can use the optimisations in Section 3.2 and consider
classes without common instances instead of class dis-
jointness. In this case, the number of refinements of
a given concept will usually be much lower, since no
explicit disjointness axioms are required. In all experi-
ments we also note that the time the reasoner requires
differs a lot (from 1.5% to 68.4%). However, since the
number of reasoner requests is finite and the results are
cached, this ratio will decrease with more calls to the
refinement operator. Summing up, the results show
that efficient ideal refinement on large ontologies can
be achieved in EL, which in turn is promising for EL
concept learning algorithms.

5. Related Work

In the area of Inductive Logic Programming consider-
able efforts have been made to analyse the properties
of refinement operators (for a comprehensive treat-
ment, see e.g. (Nienhuys-Cheng & de Wolf, 1997)).
The investigated operators are usually based on horn
clauses. In general, applying such operators to DL
problems is considered not be a good choice (Badea
& Nienhuys-Cheng, 2000). However, some of the the-
oretical foundations of refinement operators in Horn
logics also apply to description logics, which is why we
want to mention work in this area here.

In Shapiro’s Model Inference System (Shapiro, 1991),
he describes how refinement operators can be used
to adapt a hypothesis to a sequence of examples.
In the following years, refinement operators became
widely used. (van der Laag & Nienhuys-Cheng, 1994)
found some general properties of refinement opera-
tors in quasi-ordered spaces. Nonexistence conditions
for ideal refinement operators relating to infinite as-
cending and descending refinement chains and covers
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have been developed. The result has been used to
show the non-existence of ideal refinement operators
for clauses ordered by θ-subsumption. Later, refine-
ment operators have been extended to theories (clause
sets) (Fanizzi et al., 2003).

Within the last decade, several refinement operators
for description logics have been investigated. The most
fundamental work is (Lehmann & Hitzler, 2008a),
which shows for many description languages the maxi-
mal sets of properties which can be combined. Among
other things, a non-ideality result for the languages
ALC, SHOIN , and SROIQ is shown. We extend
this work by providing an ideality result for EL. Re-
finement operators for ALER (Badea & Nienhuys-
Cheng, 2000), ALN (Fanizzi et al., 2004), ALC
(Lehmann & Hitzler, 2008b; Iannone et al., 2007) have
been created and used in learning algorithms. (Espos-
ito et al., 2004) and (Fanizzi et al., 2004) have stated
that further research into refinement operator prop-
erties is required for building the theoretical founda-
tions of learning in DLs. Finally, (Lisi & Malerba,
2003) provides ideal refinement in AL-log, a hybrid
language merging Datalog and ALC, but naturally a
different order than DL subsumption was used.

6. Conclusions and Future Work

In summary, we have provided an efficient ideal EL re-
finement operator, thereby closing a gap in refinement
operator research. We have shown that the operator
can be applied to very large ontologies and makes pro-
found use of background knowledge. In future work,
we want to incorporate the refinement operator in
learning algorithms, and investigate whether certain
extensions of EL may be supported by the operator
without losing ideality.
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A. Appendix

A.1. Omitted Proofs

Definition A.1 Let C be a concept. The tree t
corresponding to C is defined by induction on n =
rdepth(C). For n = 0, we have that C = A1 u . . .uAk
and define t := ({v}, ∅, `) with `(v) := {A1, . . . , Ak}.
For n > 0, C = A1 u . . .uAk u∃r1.D1 u . . .u∃rm.Dm

with rdepth(Di) < n, 1 ≤ i ≤ m. By the induc-
tion hypothesis, for each Di there exists a tree ti =
(Vi, Ei, `i), 1 ≤ i ≤ m. Without loss of generality as-
sume Vi ∩ Vj = ∅, 1 ≤ i 6= j ≤ m. Define t := (V,E, `)
where

• V := {v} ∪
⋃

1≤i≤m Vi

• E := {(v, ri, root(ti)) | 1 ≤ i ≤ m} ∪
⋃

1≤i≤mEi

•
`(w) :=

{
{A1, . . . , Ak} if w = v
`i(w) if w ∈ Vi

Definition A.2 Let I be an interpretation. The EL
graph GI = (VI , EI , `I) corresponding to I is defined
as follows:

• x ∈ VI iff x ∈ ∆I

• (x, r, y) ∈ EI iff (x, y) ∈ rI

• A ∈ `I(x) iff x ∈ AI �

This definition also allows us to view EL graphs and
in particular EL trees as interpretations.

Lemma A.3 Let C be an EL concept with the corre-
sponding EL tree t = (V,E, `) with root v, and let I
be an interpretation with x ∈ ∆I and the correspond-
ing EL graph G = (VI , EI , `I). Then x ∈ CI iff there
exists a simulation S from v to x.

Proof The proof is by induction on d = rdepth(C)
in both directions.

(⇒) For the induction base case, let d = 0 and x ∈
(A1u . . .uAk)I . Define S := {(x, v)}, which obviously
is a simulation. Now for the induction step, let x ∈
(A1 u . . . u Ak u ∃r1.C1 u . . . u ∃rm.Cm)I . There are
(x, vi) ∈ rIi such that vi ∈ CIi , (xC , ri, vi) ∈ EC and
by the induction hypothesis there exist simulations Si
from vi to xi for 1 ≤ i ≤ m. Hence, S :=

⋃
1≤i≤m Si ∪

{(x, v)} is a simulation from v to x.

(⇐) For the induction base case, let d = 0 and C =
A1 u . . . u Ak. For every A ∈ `(v) we have A′ ∈ `I(x)
with A′ v A, so clearly x ∈ CI . For the induction

step, let C = A1u . . .uAku∃r1.C1u . . .u∃rm.Cm and
S be a simulation from v to x. There are (v, ri, vi) ∈
E and by the simulation conditions, there are also
(x, xi) ∈ rIi and (xi, vi) ∈ S for 1 ≤ i ≤ m. Now S is
a simulation from each vi to xi, and hence by the in-
duction hypothesis xi ∈ CIi . Consequently, x ∈ CI . �

Lemma 2.3 Let C,D be concept with their corre-
sponding trees t, t′. Then C v D iff t � t′.
Proof In the following let xC = root(t) and xD =
root(t′).

(⇒) We show the contrapositive. Assume there does
not exist a simulation from xD to xC . Now the iden-
tity on the vertices of tC is a simulation from xC to
xC and hence xC ∈ CI , where I is the interpreta-
tion corresponding to tC . Since there does not exist a
simulation from xD to xC , the previous lemma gives
xC /∈ DI .

(⇐) Let S be a simulation from xD to xC , and let I
be an interpretation with y ∈ CI . By the previous
lemma, there exists a simulation S ′ and the composi-
tion S ◦ S ′ yields a simulation from xD to y. Hence
y ∈ DI . �

Lemma A.4 Given trees t1, t2, the maximal simula-
tion from t2 to t1 is unique.

Proof Suppose there are maximal simulations S1, S2

from t2 to t1 with S1 6⊆ S2 and S2 6⊆ S1. Observe that
S := S1 ∪ S2 is a simulation from t2 to t1, S1 ⊂ S and
S2 ⊂ S, which contradicts to the maximality of S1 and
S2. �

Lemma 2.5 Let Tn be the set of minimal EL trees
up to depth n ≥ 0. Then |Tn| is finite.

Proof The proof is by induction on n = 0. We have
T0 = 2|NC |. For the induction step, assume Tn+1 is
infinite. Hence, there is a tree t ∈ Tn+1 whose root
v has more than |NR| · |Tn| outgoing edges. Conse-
quently, there are distinct (v, r, w), (v, r, w′) ∈ E such
that t(w) ' t(w′), which contradicts to t being mini-
mal. �

Lemma 2.6 Given trees t, t′ with depth(t′) <
depth(t). Then t′ 6� t.

Proof Let root(t) = v, depth(t) = n and v
r1−→

. . .
rn−→ vn+1 be a path of length n in t. Since t′ is

tree, i.e. an acyclic graph of depth m < n, there can-
not be w ∈ V (t′) and a relation S ⊆ V (t′)×V (t) from
t to t′ such that (w, vm) and (SC2) from Definition 2.2
holds. �

Proposition 3.5 Let ψ : Tmin → P(Tmin) be a com-
plete refinement operator. Then ψ is redundant.
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Proof We assume K = ∅ and NC contains A1 and
A2. Since ψ is complete and its refinements are min-
imal, we have t>  ∗ tA1 . Similarly, t>  ∗ tA1 ,
tA1  

∗ tA1uA2 , and tA2  
∗ tA1uA2 .

We have A1 6v A2 and A2 6v A1, which means that
tA1 6 ∗ tA2 and tA2 6 ∗ tA1 .

Hence, A1 u A2 can be reached from > via a refine-
ment chain going through A1 and a different refine-
ment chain not going through A1, i.e. ψ is redundant.�

A.2. Computing the maximal simulation

The proof of Lemma 2.3 gives rise to Algorithm 2.
Given EL trees tC and tD, starting from the leaves
of tD, it computes bottom-up the maximal simulation
from tD to tC in O(|tC | · |tD|).

Algorithm 2 Computing the maximal simulation
Require: EL trees tC , tD
S := ∅
for i = 0; i ≤ depth(tD); i := i+ 1 do

for all w ∈ VD with depth(w) = i do
for all v ∈ VC do

if (SC1) and (SC2) hold for (v,w) then
S := S ∪ {(v, w)}

end if
end for

end for
end for
returnS

Lemma A.5 Given EL trees tC and tD with roots xC
and xD, Algorithm 2 computes the maximal simulation
S from tD to tC .

Proof We prove the statement by induction on n =
depth(tD). The induction base case follows obviously.
For the induction step, let Sn be the relation obtained
in the algorithm after iterating the outermost for-loop
n times and let S be the relation obtained from the al-
gorithm. It follows from the induction hypothesis that
Sn is the maximal simulation from the subtree of ev-
ery successor node of xD to t1. Hence for the maximal
simulation S ′ from tD to tC , S ′\(V (tC)×{xD}) ⊆ Sn.
Now assume (xC , xD) ∈ S ′, but (xC , xD) /∈ S. Then
for every r2-successor yD of xD, there exist an r1-
successor yC of xC with r1 v r2, and (yC , yD) ∈ S ′.
However, (yC , yD) ∈ Sn ⊆ S and consequently the pair
(xC , xD) is also added in the last run of the outermost
for-loop to S. Hence, S is maximal. �


