Genetic Programming and its use for learning Concepts in Description Logics

Jens Lehmann

Artificial Intelligence Institute
Computer Science Department
Dresden Technical University

May 29, 2006
Outline

Outline:

- brief introduction to Evolutionary Computing
- explanation of the workings of a Genetic Programming algorithm
- application of Genetic Programming to Description Logic learning including experimental results
Evolutionary Computing
Evolutionary Computing - Introduction

- Machine Learning algorithm
- inspired by biological evolution in the real world
- uses Darwin’s theory of evolution (natural selection, survival of the fittest)

<table>
<thead>
<tr>
<th>nature</th>
<th>evolutionary computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>individual</td>
<td>problem solution</td>
</tr>
<tr>
<td>fitness</td>
<td>quality of a solution</td>
</tr>
<tr>
<td>crossover, mutation</td>
<td>genetic search operators</td>
</tr>
<tr>
<td>natural selection</td>
<td>reuse of good solutions</td>
</tr>
</tbody>
</table>
Generic Evolutionary Algorithm:

- create population
- while the termination criterion is not met:
 - select a subset of the population based on their fitness
 - produce offspring using genetic operators on selected individuals
 - create a new population from the old one and the offspring
Genetic Programming

Evolutionary Computing

Genetic Programming

Tree Representation
Creating an initial Population
Genetic Operators
Selection
Termination
Overall Algorithm
Outstanding GP Results

Learning in DLs
Introduction
Applying GP to DL learning
Experimental Results
Genetic Programming is a special kind of Evolutionary Computing algorithm

distinctive feature: individuals are represented as variable length programs

programs can have a linear (like code in imperative languages) or tree structure (like LISP)

we focus on tree structures
Tree Representation and Alphabet

- alphabet consists of terminal set T and function set F
- terminal set: set of all leaf nodes, which can occur
- function set: set of all internal nodes, which can occur

Figure: possible tree for $T = \{0, 1, 2, 3, x, y\}$ and $F = \{+,-,\ast\}$
Creating an initial Population

- all methods have as parameter a maximum depth d
- methods to create a single tree:
 - full method:
 - if $d > 0$ randomly select a function symbol and call the method recursively for all children, which need to be generated, with parameter $d - 1$
 - if $d = 0$ return a random terminal symbol
 - grow method: modify full method to select an alphabet symbol – not necessarily a function symbol – in the $d > 0$ case
- full method creates complete trees (i.e. all leaf nodes have equal depth)
Creating an initial Population

- ramped half and half:
 - divide population in \(d - 1 \) parts, where each part has its own depth parameter (from 2 to \(d \))
 - half of the trees in each part are generated using the full and the other half using the grow method with the part-specific depth parameter
- grow and full method can be used to create the population, but often ramped half and half is used to increase diversity
Genetic Operators

- it is unlikely that tree initialisation alone yields a good solution
- genetic operators aim at finding and combining pieces of a good solution
- simplest genetic operator is reproduction: copies one individual in the next generation
Crossover:

- selects two parents
- randomly selects a node in each parent, the *crossover point*
- subtrees rooted by these two points are swapped

\[
\begin{align*}
\text{parents} & : + & \times & 1 & \times & 2 & \ast & 1 \\
\text{offspring} & : + & \ast & \times & 1 & \times & 2 & 1
\end{align*}
\]
Mutation:

- selects one individual from the population
- randomly chooses a node in the individual, the *mutation point*
- subtree rooted by this node is replaced by another tree (e.g. using the grow method)

\[+ \\
\quad 1 \quad \times \\
\]

\[+ \\
\quad * \\
\quad \times \\
\quad \times \\
\quad 1 \\
\]
Editing:

- selects one individual from the population
- applies simplification rules to the individual

```
x = 0
```

```
x
```

```
1 -
```

```
x
```

```
*
```

```
x
```

```
x
```

```
x
```
Selection

- selection methods in GPs simulate natural selection ("survival of the fittest")
- fitness of an individual is usually encoded in a single number
- measuring process can be very complex and take multiple objectives into account
Fitness Proportionate Selection (FPS):

- probability of an individual being selected is proportional to its fitness
- *stagnation* problem can arise
- stagnation: in a population of individuals with similar fitness, there is almost no *selective pressure*, because all individuals have approximately the same probability of being selected
- modified versions of FPS (e.g. sigma truncation) avoid the stagnation problem
Rank and Tournament Selection

Rank Selection:
- individuals are sorted according to their fitness, i.e. each individual has a rank within the population
- probability of being selected is a function of the rank (any sensible function can be used)

Tournament Selection:
- takes m individuals from the population and selects the best one (m is typically a number between 2 and 8)
Termination

Termination Criteria:

- when optimal solution is found
- when solution is within an ϵ-range of an optimal solution
- manual abort
- fixed number of generations
- no better solution has been found for a fixed number of generations
- population does not have sufficient genetic diversity to produce new solutions
Overall Algorithm

- create initial population
- while the termination criterion is not met:
 - evaluate the fitness of all individuals in the population
 - while the number of individuals to generate is not reached:
 - choose a genetic operator
 - select (by one of the selection methods) the appropriate numbers of individuals for this operator and generate new individuals
 - copy these individuals into the new population
Human competitive GP Results

- John Koza, a respectable GP researcher, has created a list of 36 instances of "human competitive intelligence" produced by genetic programming
- some of these are:
 - creation of quantum algorithms (better than previously published results)
 - creation of soccer playing programs for Robo Cup
 - synthesis of analog circuits
Learning in Description Logics
Introduction

- goal: learn a concept definition from positive examples + negative examples + background knowledge
- Why is it useful to learn in DLs?
 - may have similar applications like ILP (Inductive Logic Programming) approaches for learning horn clauses e.g. in biology and medicine
 - incremental ontology learning in context of OWL and the Semantic Web (can help to build ontologies)
Using GP for Learning in DLs

- Why use GP?
 - flexible: can (probably) learn in any description language
 - robust: can handle noise
 - GP has shown promising results in practice
 - GP usually performs good when approximate solutions are acceptable
 - in description languages, which allow all boolean operations it becomes difficult to apply standard ILP approaches
 - makes use of computational resources (the more resources the better the result)
 - can be fine-tuned in various ways to improve results

- Why not?
 - too general: there may be better special purpose methods, especially for less expressive description languages
 - stochastic outcome: makes analysis difficult and good solution quality cannot be guaranteed
 - positive effect of natural selection and standard genetic operators is not obvious when learning DLs
ALC concepts:

\[C, D \rightarrow A \mid \top \mid \bot \mid \neg C \mid C \cap D \mid C \cup D \mid \forall r. C \mid \exists r. C \]

Example TBox \(\mathcal{T} \):

\[
\text{Man} \equiv \neg \text{Woman} \\
\text{Mother} \equiv \text{Woman} \cap \exists \text{hasChild}.
\]

Example ABox \(\mathcal{A} \):

\[
\text{Man}(\text{STEPHEN}). \\
\neg \text{Man}(\text{MONICA}). \\
\text{Woman}(\text{JESSICA}). \\
\text{hasChild}(\text{STEPHEN}, \text{JESSICA}).
\]
Learning Problem

- we have a target concept name Target and a knowledge base \mathcal{K} as background knowledge
- examples are of the form $\text{Target}(a)$ (positive) or $\neg\text{Target}(a)$ (negative), where a is an object
- let E^+ be the set of positive examples, E^- the set of negative examples and $E = E^+ \cup E^-$
- we want to find an acyclic definition Def of the form $\text{Target} \equiv C$ such that for $\mathcal{K}' = \mathcal{K} \cup \{Def\}$ we have $\mathcal{K}' \models E$
Tree Representation of \(\mathcal{ALC} \) concepts

- alphabet
 - let \(N_C \) be the set of concept names and \(N_R \) the set of role names
 - terminal set: \(T = N_C \cup \{\top, \bot\} \)
 - function set:
 \[
 F = \{\lor, \land, \neg\} \cup \{\forall r \mid r \in N_R\} \cup \{\exists r \mid r \in N_R\}
 \]
- example of a tree representation of the \(\mathcal{ALC} \) concept
 Male \(\land \exists \text{hasChild}.\text{Female} \):
Fitness Measurement

How to measure fitness?

- an example $a \in E$ is in one of the three following classes:
 - positively classified: $\mathcal{K} \models C(a)$
 - negatively classified: $\mathcal{K} \models \neg C(a)$
 - neutrally classified: $\mathcal{K} \not\models C(a)$ and $\mathcal{K} \not\models \neg C(a)$

- high penalties for classification errors (positive example classified as negative or negative example classified as positive)

- smaller penalty if classification is not provably (in)correct (positive or negative example classified as neutral)
primary learning goal is correct classification, secondary goal is small concept length (smaller concepts usually generalize better to unseen examples)

length $|C|$ of a concept C is defined inductively in the obvious way:

\[
|A| = |\top| = |\bot| = 1 \\
|\neg C| = |C| + 1 \\
|C \cap D| = |C \cup D| = 1 + |C| + |D| \\
|\exists r. C| = |\forall r. C| = 2 + |C|
\]
Uncle Problem

Uncle \equiv \text{Male} \land (\exists \text{hasSibling}. \exists \text{hasChild}. \top \\
\lor \exists \text{married}. \exists \text{hasSibling}. \exists \text{hasChild}. \top)
Uncle Problem

GP:
- 10 generations
- crossover probability: 90%, mutation probability: 3%
- selection: tournament (tournament-size 3)

Random Guessers:
- uses grow method to generate trees, which amounts to guessing a solution
- for technical reasons a depth limit of 10 is used (otherwise trees are too big to be processed in reasonable time)

Fitness Function:
- error penalty: 3 points, neutral classification penalty: 1 point, length penalty: \(\frac{1}{10} \) points
Genetic Programming and its use for learning Concepts in Description Logics

Jens Lehmann

Evolutionary Computing

Genetic Programming
Tree Representation
Creating an initial Population
Genetic Operators
Selection
Termination
Overall Algorithm
Outstanding GP Results

Learning in DLs
Introduction
Applying GP to DL learning

Experimental Results

![Graph showing fitness over tests for guesser and GP 1]
Hill Climbing Operator

- introduce a new genetic operator, which takes one individual and produces a new one:
 - given a concept C we can look at the "neighbourhood" $N(C)$ of C, i.e. concepts of the form $C \sqcup A$, $C \sqcap A$, $\exists r . C$, $\forall r . C$
 - from these concepts we can compute a subset, which are better classifiers than C and for which there is no better classifier in $N(C)$
 - if this set is empty we return C (= reproduction)
 - otherwise we randomly select one element of this set and return it

- operator can be seen as one-step-hill-climbing
- evaluation of neighbour concepts can be approximated efficiently using the fact that we already evaluated C (details omitted)
- new algorithm is a combination of GP and hill climbing
- to test it on the uncle problem we use 15% hill climbing, 80% crossover (see next slide)
Genetic Programming and its use for learning Concepts in Description Logics

Jens Lehmann

Evolutionary Computing

Genetic Programming

Tree Representation
Creating an initial Population
Genetic Operators
Selection
Termination
Overall Algorithm
Outstanding GP Results

Learning in DLs
Introduction
Applying GP to DL learning

Experimental Results
Automatically Defined Concepts (ADC)

- **idea**: inventing new concepts, which are useful for defining the target concept
- **instead of one tree, we evolve two trees**
- **alphabet of main tree is extended by a terminal symbol "ADC"**
- **ADCs are a modification of the idea of automatically defined functions (ADFs) already known in genetic programming**
- **advantage**: solution more modular, easier to read
- **disadvantage**: larger search space

-\[
\begin{align*}
\exists \text{ married} & \exists \text{ hasSibling} \\
\exists \text{ hasChild} & \top
\end{align*}
\]