Artificial Intelligence Institute
Department of Computer Science
Dresden University of Technology

Grofser Beleg

Extracting Logic Programs from
Artificial Neural Networks

Jens Lehmann

February 22, 2005

Supervisors: Prof. Steffen Holldobler
Dr. Pascal Hitzler
M.Sc. Sebastian Bader



Task and General Information

student:

topic:

goals:

name: Jens Lehmann
date and place of birth: March 29th 1982, Meissen
matr. nr.: 2851281

The research field of neurosymbolic integration aims at combining
the advantages of neural networks and logic programs.

One of the fundamental questions is how knowledge in form of logic
programs can be extracted from neural networks. It should be eval-
uated if techniques of inductive logic programming (ILP) are suited
for this task.

Additionally it should be investigated if there are good special pur-
pose algorithms for the base case of propositional logic.

e evaluating existing ILP programs for the extraction of a logic
program from a given neural network representing an immedi-
ate consequence operator

e find satisfying extraction methods for the special case of propo-
sitional logic programs



Abstract

This document is essentially divided in two parts, where different methods are presented
for extracting knowledge from an aritificial neural network representing an immediate
consequence operator.

In the first part we investigate the relationship between neurosymbolic integration
(in particular the extraction of a logic program from a neural network) and inductive
logic programming from a practical point of view. After a general introduction to the
foundations of ILP, the task of extraction of a neural network is reformulated to fit the
problem setting of ILP. We then practically test a variety of different programs and
evaluate them.

The second part of the document builds up a theoretical foundation for the special
case of extracting propositional logic programs. We give algorithms for definite as well as
normal propositional logic programs. Several theoretical results are presented, difficulties
and possible solutions are observed.



Contents

Contents

Introduction

2 Preliminaries

3 Heuristic Approach using ILP

3.1 Introductionto ILP . . . . . . . . . . . ... ... ...
3.2 The Normal Problem Setting in ILP . . . . . ... ... ... ... ...
3.3 ILP Methods . . . . . . . . . . .
3.3.1 Model Inference . . . . . . . . ...
3.3.2 Inverse Resolution . . . . . . . . .. .. . ... ... ... ...
3.4 Analyzing the Task . . . . . . . . ... ..
3.5 ILP Systems . . . . . . . ..
3.5.1 CProgol . . . . . . .
3.5.2 Aleph . . . .
3.50.3 FOIL . . . . . .
3.5.4 FFOIL . . . . . . . .
3.5.50 Golem . . . ...
3.6 Conclusions . . . . . . . . . . e

Exact Extraction of Programs

4.1 Preliminaries . . . . . . .. L
4.2 Reduced Programs . . . . . .. ... oo
4.3 Extracting Definite Propositional Logic Programs . . . . . . .. ... ..
4.4 Extracting Normal Propositional Logic Programs . . . . . . ... . ...
4.4.1 Reduction Methods . . . . . . ... ... 0oL
4.4.2 Pruning Possible Clause Bodies . . . . . . . ... ... ... ...
4.4.3 A Greedy Algorithm . . . . ... .. ... oL
4.4.4  An Intelligent Program Search Algorithm . . . . .. ... ... ..
4.4.5 A Result Regarding Minimal Programs . . . . . . . .. ... ...
4.5 Conclusions . . . . . . ..



1 Introduction

1 Introduction

Artificial neural networks and logic programming are both well established areas of
artificial intelligence (see [RNO3| for a general introduction). They both have different
advantages and disadvantages. Neural networks are massively parallel, flexible, robust,
and have well known field-tested learning algorithms (|[Roj02| provides an introduction
to neural networks). However the learned knowledge is not directly accessable. Logic
programs, on the other hand, are easy to understand and have approved deduction
algorithms. Neurosymbolic integration is a field, which aims to combine both paradigms
(see e.g. [HK94]|, [HKS99]|, [BHHO04]). Naturally, one of the main goals of neurosymbolic
integration is to be able to understand neural networks by extracting knowledge in form
of logic programs. This could help to understand these networks, which again may also
lead to a better understanding of real (non-artificial) neural networks—like the human
mind. It may also be used for massively parallel deduction systems [HK94| or for creating
a learning cycle as illustrated in Figure 1 (a similar scheme can be found in [dGBGO1]).
Currently there is a lot of interest in neurosymbolic integration, but the whole field has
still to be applied to practical problems.

To build a bridge between logic programming and neural networks two directions have
to be researched: The first one is to build up a neural network from a logic program
and the second is to extract knowledge in form of logic programs from neural networks.
This document only observes the latter case. We restrict ourselves to networks, which
represent an immediate consequence operator of an (unknown) logic program. This
means the input I and output O of the network represent interpretations with O = Tp(I).
This idea was introduced in [HK94] for the case of propositional logic. It is not yet clear
how to obtain networks computing Tp for normal first order logic programs (this is
discussed in [HKS99|, [BHO4], [BHHO04]). By restricting ourselves to networks, which
represent an immediate consequence operator, we can abstract away from the details
of the neural network we are viewing and only consider it as a black box. This is a
fundamental difference to extraction methods, which rely on the inner structure of the
network (see e.g. [dAGBGO1]| for such systems). This also means that it may be possible
to apply the results and observations made in this document to other areas of artificial
intelligence (and logic programming in particular) although the motivation behind it
clearly comes from the background of neurosymbolic integration.

The document is roughly divided into two parts with different ideas to solve the
problem of knowledge extraction. The first part evaluates the use of inductive logic
programming (ILP), which will be explained later, and the second part shows some
results of directly trying to solve the problem. To make the notions used in these two
parts clear we introduce some necessary preliminaries.

2 Preliminaries

Some knowledge in logic and logic programming is necessary to understand this doc-
ument. The logical notions and definitions will only be introduced in a very compact



2 Preliminaries

- transform
logic program neural network

l learn

- - extract -
trained logic program | e |trained neural network

Figure 1: learning cycle

way. Every standard book about logic and logic programming like e.g. [Apt97]| will cover
this in more detail. The foundations of inductive logic programming will be discussed
seperately in Section 3.

An alphabet of predicate logic contains a set R of relation (respectively predicate)
symbols, a set F of function symbols, a set C of constants and a set V of variables. A
term is recursively defined as a variable v € V, a constant ¢ € C or an expression of the
form f(t1,...,t,) with n > 1 where all ¢; (1 <14 < n) are terms and f € F is a function
symbol of arity n. An atom is an expression of the form p(ti,...,t,) with n > 0 where
all t; (1 <i < n) are terms and p € R is a predicate symbol of arity n. A literal is an
atom or a negated atom (negation is denoted by —). L; A Ly is a conjunction and LV Lo
is a disjunction of two literals L; and Ls. A clause is a finite disjunction of literals. A
Horn clause is a clause with at most one positive literal.

A logic program P is a finite set of Horn clauses of the form H «— Lq,..., L, with
n > 0 where all L; (0 < i < n) are literals and H is an atom. If n = 0 then the clause is
called a fact. H is called head of the clause and L, ..., L, body of the clause. Definite
clauses are clauses containing only atoms in their body. A definite program is a finite
set of definite clauses.

A term, atom, literal, clause or program is ground, if it does not contain any variable.
The term universe (also called Herbrand universe) Up of a logic program P is the set
of all ground terms. The Herbrand base Bp of P is the set of all ground atoms. A
Herbrand interpretation I (or just called interpretation in this paper) is a subset of Bp.
All ground atoms in [ are assumed to be mapped to true. All ground atoms in Bp \ [
are assumed to be mapped to false. An interpretation is extended to literals, clauses
and programs in the usual way. The space of interpretations Ip is the power set of Bp.
A model M of an atom A (denoted M = A) is an interpretation, which maps A to true.
This is extended to literals, clauses and programs as usual.

A substitution 0 is a partial function mapping variables to terms where a variable
cannot be mapped to itself. 0 is denoted as {z1/t1,...,z,/t,} withn > 0. A substitution
is empty if n = 0 and ground if all ¢; (1 < i < n) are ground terms. Substitutions can
be applied to terms, atoms, literals and clauses as usual. A ground instance of a clause
is the result of the application of a ground substitution to a clause. A Horn clause C
of the form Hy « Lq,...,L,, subsumes a Horn clause C5 of the form Hy «— M;,..., M,
if there is a substitution § with H16 = Hy and {L40,..., L,,0} C{My,..., M,}.



3 Heuristic Approach using ILP

For this paper we will often need the notion of a T operator, also called the imme-
diate consequence operator (often abbreviated as "operator" in this paper). We define
operators as follows:

Definition 2.1 (T» operator)
Tp is a mapping from interpretations to interpretations defined in the following way for
an interpretation / and a program P:

Tp(I):={H | H < By,...,B,,~Cy,...,~C,, € ground(P),n > 0,m > 0,

{Bi,...,B,} CL{Cy,....C,} NI =0} .

Two operators Tp for a program P and Ty for a program () are equal (denoted
Tp = Ty) if for all possible interpretations we have Tp(I) = Tg(1).

3 Heuristic Approach using ILP

3.1 Introduction to ILP

The task of learning a theory from examples is commonly called induction. It has been
an interesting domain for scientists (mostly in philosophy) for a long time. It recently
became more popular since more and more powerful computers are available. There
are several methods of inductive learning, e.g. decision tree learning. Inductive logic
programming tries to combine learning methods with the power of first order logic.
It has gained popularity because of its rigorous approach to the problem of inductive
learning and the use of powerful algorithms already known from logic.

The name of the field was invented in 1990 by Stephen Muggleton ([NCAW97]). ILP
was applied to a great variety of practical problems. In 2001 automatically discovered
rules of protein folding where important enough to be published in a scientific biology
magazine. In this case ILP outperformed approaches like neural nets and decision trees.
ILP is used in medicine to predict the therapeutic efficacy of drugs from their molecular
structure. It is also used in natural language processing (these application areas are
listed in [RNO3|, and [MR94] mentions a lot more of them).

3.2 The Normal Problem Setting in ILP

Before having a close look at the problem, which we want to solve, we describe the
problem setting of ILP in more detail. As already mentioned, induction means to learn
from examples. The result of this process is called a theory. Often the learning process
is not done from scratch, but with some amount of background knowledge B. ILP takes
this into account as we will see later. Moreover there are also two kinds of examples:
positive examples ET and negative examples E~. Positive examples are true and negative
examples are false.

How are the background knowledge and the examples specified? Here logic program-
ming comes into play. The background knowledge as well as the examples are usually



3 Heuristic Approach using ILP

finite sets of clauses. Because of the popularity of Prolog a lot of ILP programs use a
very similar syntax.
We want to introduce at least some formal definitions although this section is intended

to be mostly of practical value. The following definitions and propositions are taken from
[NCAWOT].

Definition 3.1
A theory is a finite set of clauses. 0

Definition 3.2 B
If ¥ ={Cy,Cy, ...} is a set of clauses, then we use X to denote {—Cy, —~Cs, ... }. 0

This now allows us to define what properties a good theory should have.

Definition 3.3 (correct theories)

Let ¥ be a theory and E* and E~ be sets of clauses. X is complete with respect to £,
if ¥ |= E*. X is consistent with respect to £~ if ¥ U E~ is satisfiable. ¥ is correct with
respect to £ and E~ if 3 is complete with respect to £ and consistent with respect
to B~ 0

Completeness means that we want a theory from which we can deduce all positive
examples. Consistency is harder to understand. For consistency of Y it is necessary that
¥ does not imply a clause in £~. However this is not sufficient. Let ¥ = {P(a)V P(b)}
and E- = {P(a), P(b)}. Then we have ¥ & P(a) and ¥ & P(b). But still ¥ is not an
intended theory, because it is clearly false (P(a) and P(b) are false, so their conjunction
is false). The following observation makes this clearer:

Proposition 3.4 (consistency)
Let 2 be a theory and E~ = {ey, eq, ...} be a set of clauses. Then 3 is not consistent
with respect to E~ if and only if there are iy, ..., i, such that ¥ = e;; V- Ve, .

A common setting in ILP is a restriction to definite programs as theories and ground
atoms as examples ([NCdWO97]). For this scenario we can easier understand consistency
as shown in the next proposition.

Proposition 3.5
Let P be a definite program and E~ a set of ground atoms. Then P is consistent
with respect to E~ if and only if P [~ e for every e € E~.




3 Heuristic Approach using ILP

The learning problem in ILP is now formally defined as the problem of finding a
correct theory with respect to the given background knowledge and examples. This
rigorous definition of the problem is a reason for the recent success of ILP and has led
to a rich theory.

In the sequel we give further important notions to describe the theories, which are
induced by ILP systems.

Definition 3.6

Let X be a theory and ET and E~ be sets of clauses. X is too strong with respect to
E~, if ¥ is not consistent with respect to E~. X is too weak with respect to ET, if ¥ is
not complete with respect to E*.

¥ is overly general with respect to E™ and E~, if ¥ is complete with respect to E™,
but not consistent with respect to E~. X is overly specific with respect to E* and E~,
if ¥ is consistent with respect to E~ but not complete with respect to ET. O

Note that a theory can be too strong and too weak. We illustrate this by an example.

Example 3.7 (too strong, too weak, overly general, overly specific, correct)
Suppose the following is given:

e B=1{

o 7 = {odd(s(0));odd(s(s(s(0))))}
o £~ = {odd(0); odd(s(s(0)))}
° = {odd(s(s(z)))}

)
)

= {odd(s(0)); odd(s(s(s(0)))) }
o Xy = {odd(s(0));odd(s(s(x))) « odd(x)}

Y1 is too weak (with respect to ET), because 31 = odd(s(0)). ¥; is also too strong
(with respect to E~), because ¥y |= odd(s(s(0))). Because ¥ is too strong and too
weak it is not overly specific and not overly general.

Yo is too weak, because Yy = odd(s(s(s(0)))), and it is not too strong. Thus Xy is

overly specific.
Y3 and X, are correct. O

(s
s = {odd(s(0))}
(0)
(0)

Most ILP systems start with a theory X and test, wether the theory is too weak or too
strong. If it is too weak the theory is generalized and if it is too strong it is specialized.
This process continues until a theory is found, which is neither too strong nor too weak.
Such a theory is obviously correct by Definition 3.6.

This means that the two basic steps performed by ILP systems are specialization and
generalization. Specialization is the search for a theory, which is consistent with (together
with the background knowledge) with respect to the negative examples. Generalization
means finding a theory, which (together with the background knowledge) implies all the
positive examples. We will discuss different strategies to perform the specialization and
generalization steps.



3 Heuristic Approach using ILP

3.3 ILP Methods

We will now explain two ILP methods, namely model inference and inverse resolution.
Please note that there are many other ILP methods, so our intention is only to give a
general idea of ILP techniques. A more detailed overview can be found in [MR94| and

[NCAW97].

3.3.1 Model Inference

Model inference is a prominent problem in ILP. Introducing model inference in detail
is out of the scope of this paper, so we will introduce it in an informal way. Model
inference was first described by Shapiro [Sha9l].

For this problem we assume an oracle exists. An oracle can answer if a formula is
correct. For instance a scientist can be an oracle. A justification for considering such an
oracle as given is that a scientist may be able to answer specific instances of problems,
but does not know the general rules.

For the model inference algorithm we need two additional tools: an algorithm for
finding false clauses in a theory and a refinement operator. We will explain these in
turn.

The algorithm for finding a false clause is called the Backtracing algorithm. It corre-
sponds to the specialization step in the ILP setting, because we will use it to remove
clauses from a theory (which obviously weakens it). The algorithm uses the oracle to
find a false clause (theory is too strong). It takes as input a negative example, which
is true according to a theory. The algorithm finds a clause in the theory, which is "re-
sponsible" for the wrong classification of the example. (We will not go into the details
of the algorithm.)

The second tool is a (downward) refinement operator. It is used to strengthen a theory,
which is too weak. For this, weaker versions of clauses, which were previously deleted
by the Backtracing algorithm, are added. As a simple example odd(s(s(z))) « odd(x)
is a weaker version of odd(s(s(x))). The intuition behind this is the hope that the
weaker version will not make the theory too strong. A refinement operator takes an
arbitrary element of the theory as input and returns a set of possible specializations of
this element. The refinement operator must be specified along with the examples for
the learning algorithm.

With this in mind we can now present the model inference algorithm?!:

Algorithm 3.8 (model inference)
initalize: set ¥ = {0}
repeat:
read an example
repeat:
while ¥ is too strong find a false clause and delete it from >
while X is too weak add refinements of previously deleted clauses
until X is correct with respect to the facts read so far 0

'3 denotes the empty clause

10



3 Heuristic Approach using ILP

To illustrate the algorithm we will use a slightly changed version of an example from
[NCAWOI7]. We suppose that the examples for the algorithm are ground atoms given
in the listed order: even(0) (positive), even(s(0)) (negative), even(s*(0)) ? (positive),
even(s*(0)) (negative). In fact Shapiro considers the case of a complete enumeration
of all examples, but for the model inference algorithm to terminate we can only read a
finite number of examples and must stop at some example (for this the author would
suggest using a heuristic like: stop if the theory has not changed while reading the n
previous examples with e.g. n = 10).

Let the refinement operator ¢ be as follows:

}evengﬂcﬁ H(@)), (even(s"(x)) (x)) e
p(C) = even(s™(0))} | | if €' = even(s"(z))
0 otherwise

We will now go through the algorithm step by step.

1. Set ¥ to {J}.

2. Read even(0).

3. X is neither too strong nor too weak for the examples read so far.

4. Read even(s(0)).

5. X is too strong, because X = even(s(0)). The false clause O is deleted, so ¥ = ().
6. X is now too weak, because X F even(0). Add ¢(O) = {even(z)} to X.

7. ¥ is now too strong. Delete the false clause even(z). ¥ = () again.

8. g is too weak. Add ¢(even(z)) = {even(s(x)), (even(x) < even(x)), even(0)} to

9. ¥ is too strong. Delete the false clause even(s(z)) and the tautology even(z) «
even(z). Then ¥ = {even(0)} is neither too strong nor too weak with respect to
the examples read so far.

10. Read even(s%(0)).

11. ¥ is too weak. Use the refinement operator again and add ¢(even(s(z)) =
{even(s*(z)), (even(s(x)) « even(x)),even(s(0))} to X.

12. ¥ is too strong. Delete even(s(z)) « even(z) and even(s(0)). Then ¥ =
{even(s*(z)), even(0)} is neither too strong nor too weak.

25m(0) abbreviates applying s n-times to 0, i.e. s2(0) stands for s(s(0))

11



3 Heuristic Approach using ILP

fish(x) < animal(z), swims(zx) animal(sharky)
fish(sharky) <« swims(sharky) swims(sharky)
fish(sharky)

Figure 2: the V operator

13. Read even(s*(0)).
14. X is too strong. Delete even(s®(0)).

15. 3 = {even(0)} is too weak. Add ¢(even(s*(z)) = {even(s®(z)), (even(s?(x)) «—
even(x)), even(s*(0))} to X.

16. 3 is too strong. Delete even(s®(0)).

17. 3 = {even(0), even(s*(0)), (even(s*(z)) « even(x))}.

3.3.2 Inverse Resolution

A famous ILP method introduced by Muggleton and Bluntine [MB88]| is inverse resolu-
tion. Since induction can be seen as the inverse of resolution it seems to be a good idea
to revert the resolution process. For this two operators were introduced: the W and the
V operator. We will introduce those operators following [MR94| and [NCAW97|. Again
we will leave out the formal details.

The V operator takes as input clauses '} and R and finds a clause Cy such that R
is an instance of a resolvent of C and (. It is called operator, because if you draw a
resolution of two clauses to a resolvent this looks like a "V". Suppose we have the theory
Y. = {animal(sharky); swims(sharky)} and get the new example fish(sharky). Our
theory is too weak, because it does not imply the new example, so we must generalize
it. Figure 2 illustrates this (SLD resolution is used there). In the first step R; is
fish(sharky) (this is what our new theory should imply) and C) is swims(sharky)
(this is an arbitrary choice of a clause in our theory or the background knowledge). Now
we could for instance choose Cy = fish(sharky) < swims(sharky). This choice is again
not deterministic. In general inverse resolution gives much freedom for different choices.
We could now add C5 to ¥ or do another inverse resolution step as shown in Figure
2. If we do this the new theory we get is animal(sharky); swims(sharky); fish(z) <
animal(x), swims(x).

12



3 Heuristic Approach using ILP

Cy = parent(z,y) < Cy = grandfather(z,y) «— C3 = parent(c, b) «
father(z,y) father(x, z), parent(z,y) mother(c,b)

N e N e

Ry = grandfather(z,y) «— Ry = grandfather(z,y) «—
father(z, z), father(z,y) father(z, z), mother(z,y)

Figure 3: the W operator

The W operator is a combination of two V operators. It takes clauses R, and R, as
input and finds clauses C;, Cy and (5 such that R; is an instance of a resolvent of C; and
(5 and R, is an instance of a resolvent of Cs and C3. Figure 3 illustrates this case. The
W operator forms a "W" in the graphical representation. Hence its name. In the figure
we have two clauses R, and Ry, which describe the predicate grandfather. However the
definition of grandfather could be written more succinct as one clause if we had the
predicate parent. During resolution such a predicate can disappear, so it is natural that
inverse resolution should invent new predicates if appropriate. The W operator detects
similarities between R; and R,. After that a clause C5 is created, which is intented to
be more general than R; and R, and can contain new predicates. Now the V operator
can be used for R; and C5 respectively Ry and C.

3.4 Analyzing the Task

We want to observe if ILP systems are a good way of extracting knowledge from neural
networks. The neural networks we investigate shall represent a Tp operator.

e input: a set of pairs (I, Tp(I)), where I is a Herbrand interpretation

e output: a logic program P which (approximately) has operator Tp

Of course we practically do not really need a neural network for this task, but can
instead consider a logic program and a function, which computes Tp for this program,
where we are only allowed to use this function. With this method we can compare the
output of the ILP algorithms with the original program and draw conclusions.

It is also important to notice that for this task we do not necessarily consider the
whole T operator as given, but only a set of pairs (/,7p([)). These pairs serve as
examples for the ILP algorithms. Obviously for the practical tests there can only be
finitely many such examples. This means for the case where Bp is infinite we can never
use the whole Tp operator as pairwise input for the ILP algorithms.

The whole setup is illustrated in Figure 4. The program P and the network are in
some sense "equal" (shown by the doubleline and the dotted box in the figure) because
we consider the network as black box and therefore it is only another way to view the
program.

13



3 Heuristic Approach using ILP

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

. program P "network" Tp
¢ ? serve l examples
- ILP
induced program () | —— ILP program
algorithms

Figure 4: test setup

ILP systems learn theories from background knowledge and examples. This means
that there is no existing ILP system, we know of, which directly uses pairs (I, Tp(I))
as input. For this reason it is necessary to transform these pairs into examples for ILP
systems. This basically means to encode them as logical formulae.

For I = {Ay, Ay, ..., A} and Tp(I) = {By, By, ..., B, } where Ay,..., A,,By,... By,
are atoms we get examples of the form (A; A Ay A---ANA,) = (BiAByA--- A B,y,) or
written in Horn clause form as B; « (A A Ag A -+ A A,,) for 1 < i < m. If the ILP
systems support definite clauses as examples we can directly use this. Naturally, only
finite interpretations I can be used, because only these can be written down.

We can generate "better" examples, i.e. facts instead of (possibly) non-unit clauses
if we assume that Tp is the operator of a definite program. Starting with the empty
interpretation we can now iteratively apply Tp. The elements of Tp(/) we obtain this
way are elements of the least Herbrand model and thus we can use them as positive
examples. These are "better" examples in the sense that they make the learning task
easier.

A problem with these approaches is that we get only positive examples. A quick idea
could be to use B «— (A; A As A --- A A,) as negative examples for all B ¢ Tp(I).
However this is not possible. A propositional logic program (this corresponds to the left
upper box in Figure 4) suffices as illustration:

Example 3.9
Let P be the following program:

rq

q<—p
For I = {p} we have Tr(I) = {q}, but nevertheless r < p is obviously not a negative
example, because it follows from the program (P |= r < p). This means that using this

as a negative example would render an ILP theory with ¥ = P (the best case we can
expect) incorrect. 0

We did not find an easy way to generate negative examples, so we will only learn from
positive examples.

14



3 Heuristic Approach using ILP

3.5 ILP Systems

In this section we will practically test several ILP systems with respect to the described
test setup and draw conclusions from these tests. Please note that we restricted the
research to ILP systems, which are freely available. There are too many different ILP
systems to test them all, so we choose only five systems. The systems are chosen such
that we get a good overview of the suitability of different ILP techniques for our task.

The ILP systems regarded here all use plain text files for specifying the background
knowledge and the examples. Depending on the system, background knowledge, positive
examples, and negative examples have to be written in different files. The systems are
non-interactive, which means they do not generate questions for the user to obtain
additional information. Due to the popularity of Prolog in logic programming most
systems use a similar syntax.

Finding a correct theory naturally is a search process. Practical implementations of
ILP theories often use various methods to narrow the search space. Usually this is done
by letting the user specify additional information, which will be explained seperately for
each ILP system we have tested.

3.5.1 CProgol

The first system we will investigate is CProgol. It was developed by Stephen Muggleton
and is recognized as one of the best existing ILP systems. At the time of this writing it is
still regularly updated. For the tests CProgol 4.4 was used. The following explanations
are based on the CProgol manual [MF].

CProgol uses a Prolog-like syntax and has most Prolog predicates implemented in its
core and available as background knowledge. Background knowledge and examples are
all in one file. CProgol learns definite first order programs. Arbitrary Progol clauses are
allowed as background knowledge. Positive examples are arbitrary definite examples and
negative examples are represented as headleass Horn clauses, e.g. : - father(stephen,
peter) means that stephen is not the father of peter.

As additional knowledge the user has to specify which predicates have to be learned
and which predicates can be used in the definition of such predicates. Additionally the
arity of all predicates and their argument types habe to be specified. Here is a simple
example for specifiying in CProgol that you want to learn the predicate father:

Listing 3.10
modeh (1,father (+person,+person))?

The whole line is called a mode declaration. modeh means that the specified atom can
occur as the head of a clause in the theory (also called hypothesis). The specification
says that the predicate father is of arity two and both arguments are of type person.
The arguments contain an additional sign, which can be either "+" indicating an input
variable, "-" indicating an output variable or "#" indicating a constant value. By the
above declaration we know that father(X,Y) can be used as the head of a clause.
Every call to this should bind both arguments, i.e. a call to father should not contain

15



3 Heuristic Approach using ILP

a variable. The 1 in the declaration above is the recall number. Is is used to limit the
number of alternative solutions. In this case for a call to father the answer will be yes
or no, so there is just one solution. If the user does not know a limit for the number of
the alternative solutions * can be used instead of a number.

Besides head mode declarations there are also body mode declarations:

Listing 3.11
modeb (*,parent (-person, +person))?
modeb (*,parent (+person, -person) ) ?

This says that the predicate parent can be used in the body of a hypothesis clause. If
parent (X,Y) means that X is the parent of Y, then the first line says that this predicate
can be used to find parents of a given child and the second line can be used to find
children of a given parent.

Types are realized by writing down a predicate as background knowledge:

Listing 3.12
person(stephen) .
person(peter) .
person(barbara) .
person(mark) .
person(linda).
person(mary) .

CProgol in new versions is able to learn from exclusively positive examples (called
positive only learning), which is a quite common setting in general and especially suited
for our task, because we have no easy way to generate negative examples. Positive only
learning is turned on by adding this line to the specification:

Listing 3.13
:- set(posonly)?

Now we want to perform the first test with a propositional logic example. Let the
following program P be given (see Figure 4 for an overview of the test setup):

Listing 3.14 (given program)

k :- s, p.
k:-f, g, e.
k :-z, p.

We use these randomly selected positive examples for CProgol:

Listing 3.15 (positive examples)

k :- s, p, e.
k:-s, p, g
k :- s, p, z.
k :-s, p, e, g.

16



3 Heuristic Approach using ILP

k :-z, p, e, s.
k :-z, p, s
k :-z, p, £
k :-z, p, e.
k:-f, g, e, s.
k:-f, g, e
k:-1f, g, e, z.

To repeat it: The examples are generated by using the T operator. The first example
above exists, because k € Tp({s, p,e}). We obtain the following theory as result:

Listing 3.16 (result)
k :- p.
k :- e.

The theory says that whenever p or e is true, then k is also true. If we look at the
examples we provided than we see that this is the case. This is because in the initial
program every clause contains p or e, so every positive example must also contain p or
e. However we immediately see that the induced theory is much too simple compared
to the initial program. This means that the positive only learning does not give us the
results we would like to have. It does not compensate the lack of negative examples
good enough.

CProgol computes a rating for different clauses in each step and then takes the clause
with the highest rating. The rating is primarily based on the information how many
positive examples a clause explains and how many random instances (generated by the
positive only learning algorithm) do not follow from the clause. Here are all clauses,
which CProgol considers as the first clause of the theory together with some CProgol
ratings:

Listing 3.17
188,136,1 k
188,128,1 k
187,124,1 k
185,104,1 k :
182,76,1 k :-

k

k

k

k

-

181,72,1
181,72,1
175,56,1
0,192,191

-

|
n O 0 n n n o <T

-

o - o oo

The first number is the overall rating (higher is better). The clause with the best rating
is likely to be used in the final hypothesis. The second number is the rating for positive
examples (higher is better) and the third number a rating for random instances (lower
is better). One can see that the actually desired clauses get a slightly lower rating than
the simple clauses, which are included in the final program. The third number shows

17



3 Heuristic Approach using ILP

that there is a problem with the random instances for our test setup. It seems that
CProgol does not generate good random instances of clauses in this case. We will come
back to this topic later. CProgol offers the possibility to adjust parameters, but as this
is a more fundamental problem there are no parameter adjustments, which will help in
this case.

Next we will observe a first order example: the addition function.

Listing 3.18
add(X,0,X).
add(X,s(Y),s(Z)) :- add(X,Y,Z).

Let us look at the mode declaration we need to specify:

Listing 3.19

:- modeh(1, add(+number, #number, -number))?

:- modeh(1, add(+number, s(+number), s(-number)))?
:- modeb(1, add(+number, +number, -number))?

The first line must be given, because of the first line in the definition of the add
function. We explicitly allow a number as second argument. The other two arguments
must be variables. In the second line we allow the use of the successor symbol s in
the second and third argument of the function. The last line says that we can call add
with three variables in the body of a hypotheses clause. Please note that these mode
declarations already contain a lot of information. The advantage of these declarations
is that they cut down the search space dramatically. This is a key to the success of
CProgol and similar ILP systems. They allow a lot of domain specific knowledge to
be used in these declarations. However the drawback is that in case you do not know
these mode declarations (which is a common case) then you may not get the expected
results. There has been research how to learn mode declarations, but CProgol does not
yet support this feature.

Next we define the datatype number. This can easily be done by a recursive definition:

Listing 3.20
number (0) .
number (s(X)) :- number(X).

Now we need examples as input for CProgol. We generate examples by using the
emtpy interpretation and interpretations with one element as input for the Tp operator.
We have Tp(0) = {(s"(0),0,5™(0)) | n € N'}, so we usually would get an infinite number
of examples for each interpretation. We will write down only the first three examples
for n < 2. For I # () we always get a fourth example, because of the second clause in
the definition of the add function. This gives us the following input file (lines starting
with % are comments):

Listing 3.21
% empty interpretation

18



3 Heuristic Approach using ILP

add(0,0,0).
add(s(0),0,s(0)).
add(s(s(0)),0,s(s(0))).

% {add(0,0,0)%

add(0,0,0) :- add(0,0,0).
add(s(0),0,s(0)) :- add(0,0,0).
add(s(s(0)),0,s(s(0))) :- add(0,0,0).
add(0,s(0),s(0)) :- add(0,0,0).

% {add(0,0,s(0))}

add(0,0,0) :- add(0,0,s(0)).
add(s(0),0,s(0)) :- add(0,0,s(0)).
add(s(s(0)),0,s(s(0))) :- add(0,0,s(0)).
add(0,s(0),s(s(0))) :- add(0,0,s(0)).

% {add(0,s(0),0)}

add(0,0,0) :- add(0,s(0),0).
add(s(0),0,s(0)) :- add(0,s(0),0).
add(s(s(0)),0,s(s(0))) :- add(0,s(0),0).
add(0,s(s(0)),s(0)) :- add(0,s(0),0).

% {add(0,s(0),s(0))}

add(0,0,0) :- add(0,s(0),s(0)).
add(s(0),0,s(0)) :- add(0,s(0),s(0)).
add(s(s(0)),0,s(s(0))) :- add(0,s(0),s(0)).
add(0,s(s(0)),s(s(0))) :- add(0,s(0),s(0)).

% {add(s(0),0,0)}

add(0,0,0) :- add(s(0),0,0).
add(s(0),0,s(0)) :- add(s(0),0,0).
add(s(s(0)),0,s(s(0))) :- add(s(0),0,0).
add(s(0),s(0),s(0)) :- add(s(0),0,0).

% {add(s(0),0,s(0))}

add(0,0,0) :- add(s(0),0,s(0)).
add(s(0),0,s(0)) :- add(s(0),0,s(0)).
add(s(s(0)),0,s(s(0))) :- add(s(0),0,s(0)).
add(s(0),s(0),s(s(0))) :- add(s(0),0,s(0)).

% {add(s(0),s(0),0)}

add(0,0,0) :- add(s(0),s(0),0).
add(s(0),0,s(0)) :- add(s(0),s(0),0).
add(s(s(0)),0,s(s(0))) :- add(s(0),s(0),0).

19



3 Heuristic Approach using ILP

add(s(0),s(s(0)),s(0)) :- add(s(0),s(0),0).

% {add(s(0),s(0),s(0))}

add(0,0,0) :- add(s(0),s(0),s(0)).
add(s(0),0,s(0)) :- add(s(0),s(0),s(0)).
add(s(s(0)),0,s(s(0))) :- add(s(0),s(0),s(0)).
add(s(0),s(s(0)),s(s(0))) :- add(s(0),s(0),s(0)).

The examples look "odd", but this is the systematic way to generate them if we assume
that the Tp operator is not an operator of a definite program, i.e. not monotonic. The
theory we get is this one:

Listing 3.22
add(A,0,A).
add(A,s(B),s(C)) :- add(A,B,C).

This is exactly the definition of the desired add function. Now let us look at the
examples if we assume that the Tp operator is monotonic (which is true in this case,
because the add program is definite). Then we obtain examples by first computing
I = Tp((), then compute Tp(I)) etc. ,i.e. we iteratively apply the Tp operator to resulting
interpretations. We only do this three times and again only write down some of the
(infinitely many) examples we get. The advantage is that this is exactly the standard
setting for most of the ILP problems: the examples are ground facts. We use the
following 12 examples:

Listing 3.23

add(0,0,0).

add(s(0),0,s(0)).
add(s(s(0)),0,s(s(0))).
add(s(s(s(0))),0,s(s(s(0)))).

add(0,s(0),s(0)).
add(s(0),s(0),s(s(0))).
add(s(s(0)),s(0),s(s(s(0)))).
add(s(s(s(0))),s(0),s(s(s(s(0))))).

add(0,s(s(0)),s(s(0))).
add(s(0),s(s(0)),s(s(s(0)))).
add(s(s(0)),s(s(0)),s(s(s(s(0))))).
add(s(s(s(0))),s(s(0)),s(s(s(s(s(0)))))).

If we run CProgol on these examples we also get the theory shown in Listing 3.22.

Listing 3.24
add(A,0,A).
add(A,s(B),s(C)) :- add(A,B,C).

20



3 Heuristic Approach using ILP

An interesting question is raised by the observations made for CProgol. Why does it
perform better for predicate logic than for propositional logic? From the observations
made for the propositional logic example the author assumed that there is a problem with
the random instances generated by CProgol. More concrete: CProgol uses the modeh
declarations to generate possible ground atoms. For the propositional logic case the only
possibility is k. For the declaration :- modeh(1, add(+num, s(+num), s(-num)))?
CProgol will generate ground atoms as examples, where the second and third argument
start with s. This assumption could be verified by reading [Mug01|, where positive only
learning is covered in detail. For the propositional logic case it would be better to not
only generate atoms, but ground clauses, because otherwise the only random instance is
the predicate itself. The approach CProlog uses is clearly directed towards learning first
order theories. However by modifying the positive only learning algorithm to generate
(non-unit) clauses instead of random instances for propositional logic, it could possibly
also produce satisfying results for propositional logic.

3.5.2 Aleph

Aleph is written in Prolog. It works with separate text files for background knowledge,
positive examples, and negative examples. It is the successor of PProgol, which itself is a
Progol implementation of an earlier version of CProgol. For this reason its syntax is very
similar to the one of Progol. Aleph has an active user base and is still regularly updated
at the time of this writing. It has some notable differences with respect to our task
compared to CProgol. Firstly in Aleph one can exactly specify for each predicate, which
predicates can be used in its body. Secondly Aleph is able to learn mode declarations
itself.

However there are also some serious restrictions. It is not directly possible to specify
non-unit clauses as examples. Unfortunately this is exactly what we need if we assume
that the network represents a non-monotonic T operator. Moreover learning mode
declaration is only guaranteed to work if the background knowledge is ground and if
positive only learning is not activated. In its current state Aleph does not provide an
advantage over CProgol.

For the add example Aleph was not able to generate the desired theory with the
examples, for which CProgol could induce the desired theory:

Listing 3.25

add(0,0,0).

add(s(0),0,s(0)).
add(s(s(0)),0,s(s(0))).
add(s(s(s(0))),0,s(s(s(0)))).

add(0,s(0),s(0)).
add(s(0),s(0),s(s(0))).
add(s(s(0)),s(0),s(s(s(0)))).
add(s(s(s(0))),s(0),s(s(s(s(0))))).

21



3 Heuristic Approach using ILP

add (0,s(s(0)),s(s(0))).
add(s(0),s(s(0)),s(s(s(0)))).
add(s(s(0)),s(s(0)),s(s(s(s(0))))).
add(s(s(s(0))),s(s(0)),s(s(s(s(s(0)))))).

Instead it generated this theory:

Listing 3.26

add(A, 0, A).

add (0, s(0), s(0)).

add(A, s(B), s(A)) :- add(B, B, B).
add (0, s(s(0)), s(s(0))).
add(s(0), s(s(0)), s(s(s(0)))).
add(A, s(B), s(C)) :- add(B, A, C).

This shows that Aleph performs worse than CProgol on this concrete example. Adding
more examples did not change the resulting theory.

3.5.3 FOIL

FOIL was written in 1993 by Quinlan and Cameron-Jones. (We tested version 6.) It is
one of the most well-known and most succesful ILP systems. See [QCJ93] as a general
reference.

FOIL learns from tuples. For one fixed predicate positive and negative examples
are listed. Negative examples are optional. However FOIL does not use a probabilistic
strategy to compensate negative examples, but the closed world assumption. This means
all examples, which are not specified, are assumed to be negative. This in turn means
that all possible examples should be specified, if negative examples cannot be provided,
which is the case for our setup. For all data types every possible value must be specified
in advance. Thus it is impossible to use infinite domains.

An example will illustrate this. Here is the (only) input file for FOIL when trying to
learn the member predicate for lists:

Listing 3.27 (FOIL)

X: 1, 2, 3.

L: [111], [112], [113], [11], [121], [122], [123],
[12], [131], [132], [133], [13], [1], [211],

[212], [213], [21], [221], [222], [223], [22], [231],
(232], [233], [23], [2], [311], [312], [313], [31],
[321], [322], [323], [32], [331], [332], [333], [33],
(31, *[1.

member (X,L)

1, [1]
3, [3]

22



3 Heuristic Approach using ILP

3. [331]
3, [333]

1,0
1, [3]

i;t323]
1, [332]

(Instead of ... there is additional code.)

In the example one first specifies the possible values for X and L. X is an element of
a list and L is a list with these elements. Elements marked with * can be part of the
induced theory. Further down in the input file one can find the header member (X,L)
(standing for X is an element of L). Below this header all positive examples are listed
until the line with the semicolon. From there on, until the line with the single dot, the
negative examples follow.

It is not clear how to use FOIL for rule extraction, because the input syntax does
not allow the specification of non-unit clauses as examples. It can only be used in the
case we have facts as examples (i.e. we assume Tp is an operator of a definite program).
However in this case there is still the restriction that only a finite domain can be used
and all positive examples need to be given. So for most cases we cannot use it to extract
rules.

3.5.4 FFOIL

FFOIL was written by Ross Quinlan in 1996 (we tested version 2). It is specialized on
the learning of functions, i.e. relations where all values except the last one are input
values. FFOIL is written to only learn from positive examples. Other than that it is
very similar to FOIL. We could not run any succesful task relevant tests with FFOIL,
so we cannot recommend it for our setup.

3.5.5 Golem

Golem is a classical ILP system. It was first described by Muggleton and Feng [MF92]. Tt
uses simple mode declarations, but uses completely different ILP techniques like CProgol.
Golem requires the background knowledge to be ground. Unfortunately Golem does not
support positive only learning. By using the add example it was tested, if Golem is
nevertheless able to induce good theories, but this was not the case, i.e. it was not able
to extract general rules from the examples.

23



3.6

3 Heuristic Approach using ILP

Conclusions

As a summary we now list some of the positive and negative observations we made when
using ILP systems for extracting a logic program from a neural network representing a
Tp operator.

Positive Results/Observations:

The fact that the task could be at least partly solved using ILP techniques is itself
a success. Since this was (probably) not done before we could not expect very
good results.

CProgol is able to learn definite first order programs from clauses as positive
examples.

Negative Results/Observations:

The observed ILP systems only learn definite programs (if at all). This is a re-
striction, because it requires the Tp operator represented by the network to be
monotonic. However using learning algorithms for the neural network may change
it into a nonmonotonic network, so we cannot guarantee this assumption in general.

For ILP systems it is not important if the operator of the extracted program is
equal to the operator, which is represented by the network. This is naturally the
case, because the ILP systems we have observed are concerned with first order
logic semantics. Maintaining the Tp operator allows the use of different semantics
for the resulting program. However this is only a problem if the resulting program
is not definite.

For the special case of propositional logic none of the programs provided good
results, although this case is obviously simpler than first order case. We noted
that is probably possible to modify CProgol such that it produces better results
for this case. The next part of this document will investigate extraction methods
for propositional logic in detail. Our hope behind this research is that there are
good extraction algorithms with provable results.

Most ILP systems do not support positive only learning with non-unit ground
clauses as examples.

Only finite interpretations can be used to generate examples.

From the infinitely many examples we may get for each pair (I,Tp(I)) we still
have to intelligently collect good examples, which is itself not an easy task.

CProgol found a solution for the add program, but for this we need to encode a
lot of knowledge in the mode declarations. Such knowledge may not always exist.
The question, if ILP systems, which do not need such knowledge, still give the
same good results, is still open.

24



4 Exact Extraction of Programs

As a conclusion we can say that ILP is an option for extracting definite first order
logic programs. CProgol currently seems to be the best (tested) program for this task.

4 Exact Extraction of Programs

Section 3 has shown that ILP techniques give us a partial success for extracting definite
first order programs. However we feel the need of researching the extraction task (for
the special case that the network represents a Tp operator) in a more theoretical way.
We are interested in extraction algorithms, which return correct and minimal programs.
Correctness in this context means that the operator of the network is the same like the
operator of the program. Minimality means that the program should have minimal size
(which we will later define precisely). Currently these questions are not even solved for
propositional logic, so we will only focus on this base case. Of course one of the hopes
is that similar algorithms can be used for the first order case.

4.1 Preliminaries

Since this section talks only about propositional logic programs, we explicitly spell out
the definition of an immediate consequence operator for propositional logic.

Definition 4.1 (Tp operator for propositional logic programs)
Tp is a mapping from interpretations to interpretations defined in the following way for
an interpretation I and a propositional logic program P:

TP<I) ::{q|q<—p1>---7pm_‘7"17--~7_‘7“mGP,TLZO,mZO,
Do} C L {rre o or} 01 = 0)

For convenience the corresponding definition for the special case of definite programs
is given:

Definition 4.2 (Tp operator for definite propositional logic programs)
Tp is a mapping from interpretations to interpretations defined in the following way for
an interpretation I and a definite propositional logic program P:

TP<]) :{q|q<_p177pn€Pan207
{p1,...,pnt C 1}

An important property of Tp for definite programs P is montonicity, i.e. I C J implies
Tp(I) C Tp(J).

Analogously to the Tp operator we will also write down the notion of subsumption for
the case of propositional logic. This definition is easier than the first order definition,
because we do not need substitutions.

25



4 Exact Extraction of Programs

Definition 4.3 (subsumption for propositional logic)

Assume that we have a Horn clause C1: h < p1,...,pq, q1, - .., g, and a Horn clause
Co: h — ry,...,1¢,781,...,78q with {p1,...,pa} C {r1,...,r.} and {q1,..., @} C
{s1,...,84}. Then Cy subsumes Cs. 0

If it is clear from the context we will sometimes say "program" or "logic program"
instead of "propositional logic program".

4.2 Reduced Programs

Assume we have the following programs with only a single predicate p and a single Horn
clause:

P = {p < p}

P, ={p—p,p}

There are only two possible interpretations for a single predicate, namely I; = () and
I, = {p}. The Tp operator for both programs is the same, because Tp, (I1) = Tp,(I;) = 0
and Tp, (I2) = Tp,(I2) = {p}. Our conclusion is, that in the general case one Tp operator
represents several (in fact infinitely many) different programs.

In Section 4.3 we will show that all definite programs having an operator Tp can be
reduced to exactly one program. For this we introduce the notion of a reduced program
and show how to construct it.

Definition 4.4 (reduced propositional logic program)
A reduced program P is a program with two additional properties:

1. There are no clauses C; and Cs with C; # Cs in P, such that C subsumes Cj.

2. A predicate symbol does not appear more than once in a body of a clause. 0

One can construct a reduced program ) from every program P by using the following
algorithm:

Algorithm 4.5 (constructing a reduced program)
For an arbitrary propositional logic program P perform the following reduction steps as
long as possible:

1. If there are clauses C; and Cy with C; # C5 in P and ] subsumes Cy, then remove
Cs.

2. If a literal appears twice in the body of a clause, then remove it once.

3. If a predicate and its negation appear in the body of a clause, then remove this
clause. 5

26



4 Exact Extraction of Programs

Obviously the resulting program is reduced. If a program P was reduced to a program
@ by this algorithm we say "() is a reduced program of P". Please note that from now on
when we speak about (possible) clauses of an extracted program we will often implicitly
assume that these do not contain a literal twice in their body. With this simple restriction
the number of possible clauses is finite in propositional logic.

Proposition 4.6 (correctness of reduction)
If @ is a reduced propositional logic program of P then Tp =Ty.

PROOF For proving the proposition we will show that each reduction step in Algorithm
4.5 does not influence the immediate consequence operator. More formally we call P,
the program before a reduction step and P, the program after a reduction step. We
must show Tp, = Tp, for each of the four possible steps. For this we have to show
Tp,(I) = Tp,(I) for an arbitrary interpretation I.

1. Let Ci: h «— p1,....Pa,q1,...,q and Cy: h «— rq,...,7¢,81,...,18q with
{p1,-- - pa} CH{r1,...,retand {q1, ..., ¢} C {s1,...,84}. Because Cs is removed,
we know P, = P \{C>}.

Tp,(I) C Tp(I): This is equivalent to ¢ € Tp,(I) — q € Tp,(I). Because P, has
one clause more than P, and is otherwise identical this is obvious. (Adding clauses
cannot delete elements in Tp,(7)).

Tp,(I) C Tp,(I): This is equivalent to g € Tp (I) — q € Tp,(I). We assume
q € Tp,(I) and want to show ¢ € Tp,(I) . q # h implies ¢ € Tp,(I), because for
Horn clauses with heads other than h nothing has changed by removing Cs. So
we can assume ¢ = h. Further we know that h € Tp\\(cy,053 (1) implies h € Tp, (1)
by the same argument like in the other direction of the proof. This means we can
assume h € Tp\(cy;053(1). Because of this and h € Tp, (1) we have h € T{c,;0,1(1).
This means that ({py,...,pa} C T and {q,...,q}NI =0)or ({ry,...,r.} CIand
{s1,...,84} NI =0). In both cases we have {p1,...,p.} C I and {q,...,q} NI =
0, so we have h € Tyc,y(1). Hence h € Tp,(1).

2. Here Tp, = T'p, is trivial, because sets are used in the definition of T, so it does
not matter if an element exists twice or once.

3. Let C be a clause of the form h < p1,...,pp,q1, ..., "¢y with p € {p1,...,pn}
and p € {q1,...,qn}. No interpretation fulfills p € I and p & I as required by the
definition of Tp, so the clause can be safely removed. n

27



4 Exact Extraction of Programs

Why do we need the notion of a reduced program? We have seen that reducing
programs maintains the T operator. We later want to extract an unknown program
from a Tp operator, but instead of extracting an arbitrary program we will try to extract
a reduced program. Simply speaking reduced programs are easier to read and smaller,
because they contain less superfluos clauses respectively literals in the body of clauses.
p <« p and p < p,p are syntactically different, but we prefer the first over the latter.
Similarly we do not want to have ¢ < p; and ¢ < p1,p> in one program, because the
latter clause does not have any influence on the Tp operator of the program if the first
clause is already present. In this sense g «— p1, po is superfluous. Logic programs written
by humans are usually reduced.

4.3 Extracting Definite Propositional Logic Programs

What we want to show in this section is, that a given Tp operator for an unknown
program P corresponds to exactly one reduced definite program. We can divide this
work in two steps. At first we will constructively show, that there is a definite program
for each monotonic operator. Later we will prove that the program we get is indeed the
only definite program which has the given operator.

We start by giving an extraction algorithm and later prove properties of it.

Algorithm 4.7 (extracting a reduced definite program from Tp)
Let Tr be an operator of an unknown definite propositional logic program P Bp be the
set of all predicates in P and ) be an empty set.
For all interpretations I C Bp ordered by |I| starting with || = 0 do the following:
Let I = {p1,...,pn}. For every q € Tp(I) check, if a clause ¢ «— ¢, ..., ¢y, with
{q1,-..,qm} C I isin Q. If this is not the case, then add the clause ¢ « py,...,p, to

Q. O

Obviously this algorithm terminates, because there are only finitely many interpre-
tations. Please note that we require the input of the algorithm to be an operator of a
definite program. (More precisely for proving the two following propositions we just re-
quire the input of the algorithm to be a monotonic mapping M : 287 — 287} Also note
that the actual order of the interpretations is not important as long as an interpretation
is always treated before any interpretation having more elements.

There are interesting points regarding the efficiency of the presented algorithm. The
author recommends to order the predicates (the order can be arbitrary). This makes
it possible to write a method, which returns the successor of an interpretation I with
respect to |I| and predicate order. Thus it is not necessary to store all possible inter-
pretations, hence the space complexity is very low (basically only @ and the current
interpretation need to be stored). The bottleneck is the time complexity, which is ex-
ponential with respect to the number of predicates. However it is also exponential with
respect to the maximum length of clauses in (). (This is because for an input |I| = n
the algorithm only generates Horn clauses of length n.) Thus if we know a limit n of the
number of elements in a body of a Horn clause in advance, we can reduce time complexity
and maintain the properties, we will prove, by stopping the algorithm if |I| > n.

28



4 Exact Extraction of Programs

Proposition 4.8 (correctness of the extraction algorithm)
Let T be the input of Algorithm 4.7 and the program @ its ouput, then Tp = Tj.

PROOF We have to show Tp(I) = Ty(I) for an arbitrary interpretation I = {p1,...,pn}

Tp(l) CTp(I): Thisisequaltoq € Tp(l) — q € To(I). Assume we have a predicate ¢
in Tp(I). We know that the algorithm will treat I and ¢ (because for every interpretation
I every element in Tp(I) is investigated). Then we have to distinguish to cases.

Case 1: There already exists a clause ¢ < q1, ..., ¢, with {¢1,...,¢n} € I in Q. Then
by definition q € T(1).

Case 2: There is no such clause. Then the clause ¢ < py,...,p, added to @), so we
have again g € Ty (1).

To(I) € Tp(I): Analogously to the first part of the proof we now have a predicate ¢
in T(I) and want to show it is in Tp(I). If ¢ € TH(I) we have by definition of Ty, a
clause ¢ < q1,...,qm with {q1,...,¢n} € I. This means that the extraction algorithm
must have treated the case ¢ € Tp(J) with J = {q1,...,¢mn}. Because Tp is monotonic
(it is the operator of a definite program) and J C I we have Tp(J) C Tp(I), so ¢ is also
an element of Tp(I). n

Proposition 4.9
The output of Algorithm 4.7 is a reduced definite propositional logic program.

PRrROOF Obviously the output of the algorithm is a definite program, because it generates
only definite Horn clauses. We have to show that the resulting program is reduced. By
contradicition we assume () is not reduced. According to Definition 4.4 there are two
possible reasons for this:

Case 1: A predicate symbol appears more than once in the body of a Horn clause.
This is impossible, because the algorithm does not generate such clauses (sets do not
contain elements twice).

Case 2: There are two different Horn clauses C'; and Cs in @), such that C; subsumes
Cy. Let Cy: h«—py,...,ps and Co: h «— qq,...,q with {p1,...,pa} C {q1,..., @} As
abbreviations we use I = {p1,...,p.} and J = {q,...,q}. Because of case 1 we know
|I| = a and |J| = b (all elements in the body of a Horn clause are different). Thus we
have |I| < |J|, because C; and Cy are not equal. This means the algorithm has treated
I (and h € Tp(I)) before J (and h € Tp(J)). C; was generated by treating I and
h, because C exists and can only be generated through I and h (otherwise the body
respectively head of the Horn clause would be different). Later the case J and h was

29



4 Exact Extraction of Programs

treated. The algorithm checks for clauses h « rq,..., 7y, with {r,...,rn} C J. C} is
such a clause, because I C J, so Cy is not added to Q). Because (by the same argument
as above) Cy can only be generated through J and h, Cy cannot be a clause in @), which
is a contradiction and completes the proof. n

Proposition 4.8 and 4.9 have shown, that the output of the extraction algorithm is in
fact a reduced definite program, which has the desired operator. While the algorithm
itself is an important practical result of this paper, there is an interesting theoretical
result, which we will prove next.

Proposition 4.10
For any operator Tp of a definite propositional logic program P there is exactly one
reduced definite propositional logic program Q) with Tp = Ty,.

PROOF Assume we have an operator Tp of a definite program P. With Algorithm 4.7
and the Propositions 4.8 and 4.9 it follows that there is a reduced definite program @
with Tp = Tyy. We have to show that there cannot be more than one program with this
property.

To prove this we assume (by contradiction) that we have two different reduced definite
programs P, and P, with Tp = Tp, = Tp,. Two programs being different means that
there is at least one Horn clause existing in one of the programs, which does not exist in
the other program. Without loss of generality we assume that there is a clause C} in P,
which is not in P,. (] is an arbitrary definite Horn clause of the form A < p1,... pp.
By definition of Tp we have h € Tp, ({p1,-..,Pm}). Because Tp, and Tp, are equal
we also have h € Tp,({p1,...,pm}). This means that there is a clause Cy of the form
h — qi,...,q, with {q1,...,¢.} € {p1,...,pn} in P». Applying the definition of Tp
again this means that h € Tp,({q1,...,q,}) and h € Tpr,({q1,-..,¢n}). Thus we know
that there must be a clause C3 of the form h «— 7y, ..., 7, with {ry,..., 7.} CT{q1,...,qu}
in Pl.

(3 subsumes (1, because it has the same head and {ry,...,7,} C {q1,...,q.} C
{p1,.--,pm}. We know that by our assumption C; is not equal to Cy, because C}

is not equal to any clause in P,. Additionally we know that [{p1,...,¢n}| = m and
{q1,--.,qn}| = n, because P; and P, are reduced, i.e. no predicate appears more than
once in a body of a Horn clause. So we have {q1,...,¢,} C {p1,...,pm}. Because C3

has at most as many elements in its body as (5, we know that ] is not equal to Cs.
That means that P, contains two different clauses € and C3, where C3 is a reduced
Horn clause of C;. This is a contradiction to P; being reduced. u

This shows that each algorithm extracting reduced definite programs from 7p» must
return the same result like Algorithm 4.7. From this proposition another result follows
easily, showing that the reduction we defined is optimal for definite programs with respect
to Tp and a straightforward size measure of programs.

30



4 Exact Extraction of Programs

Definition 4.11

The size of a program P is the sum of the number of all literals in all Horn clauses in
P. A program P is (strictly) smaller than a program @, if its size is (strictly) smaller
than the size of (). A program is minimal, if there is no strictly smaller program with
the same immediate consequence operator. 0O

Corollary 4.12
If P is a reduced definite propositional logic program, then it is minimal.

PROOF By contradiction we assume there exists a program (), which has operator Tp
and P is not smaller than ). By Algorithm 4.5 and Proposition 4.6 we know that () can
be reduced. The resulting program @),..4 is definite, smaller (this was not proved, but is
obvious) and has the operator Tp. From Proposition 4.10 we know that there is only
one reduced definite program with operator Tp, so we have P = (),.q. Because Q)4 is
smaller than (), P is also smaller than (). n

4.4 Extracting Normal Propositional Logic Programs

In this section we will try to extend the extraction to normal propositional logic pro-
grams.

Remark 4.13

It is easy to see that Proposition 4.10 does not hold for normal programs. In general
there can be more than one reduced propositional logic program () with Tp = Tfy. These
are two reduced programs having the same Tp operator:

Plz{p}
Py = {p < p;p «— —p} 0

This means we should investigate other extraction methods. We will see that the
extraction is indeed a lot harder for normal programs compared to definite programs.
The first result we need is that for any given mapping we can construct a program with
this operator.

Proposition 4.14

Let Bp be a finite set of predicates. For every mapping M : 287 — 2BP from Her-
brand interpretations to Herbrand interpretations we can construct a propositional
logic program P with T = M.

31



4 Exact Extraction of Programs

PROOF The construction of P works as follows: P is initialized as an empty set. For
every interpretation I with I = {ry,...,7,} and Bp\I = {s1,..., Sy} and every element
pin M(I) we add a clause p < 71,...,74,Sp, . .., 78, to P.

For this program we have to show Tp(J) = M(J) for an arbitrary interpretation .J
with J = {t1,...,t.} and Bp \ J = {u1,...,uq}.

M(J) C Tp(J) Assume ¢ € M(J). We want to show ¢ € Tp(J). Since q¢ € M(J)
means (by the above construction) that P contains a clause q « t1,...,t., "u, ..., g
we obtain ¢ € Tp(J).

Tp(J) € M(J) Assume g € Tp(J). We want to show ¢ € M(J). q € Tp(J) means
that there is a clause ¢ «— vy,..., v, ~wy, ..., ~wy with {vy,... 0.} C {t1,...,t.} and
{wy,...,wy NI =0, ie {wy,...,wr} C{uy,...,uq}. Since every clause in P has all
elements of Bp in its body the only possible clause, which fulfills these requirements
is q «— ty,...,t.,uy, ..., ug. This clause was added to P by the above construction,
because there is an interpretation {ti,...,t.} = J such that ¢ € M(J). m

A short example will illustrate this simple construction:

Example 4.15
Let Bp = {p, q} and the mapping M be defined by the following:

M(0) =
M({p}) = {q}
M({q}) =

M({p,q}) =

We obtain the following program P:

{p, q}

P "p,7q
D<<D:q
q<—p,—q
q<~—Dpq

It is now easy to verify Tp = M in this example. O

4.4.1 Reduction Methods

The construction above is already a correct extraction method as we have proved. How-
ever we are interested in getting small programs with the same operator. For this we
define, as in the case of definite programs, reductions on programs. Remark 4.13 has
shown that Definition 4.4 (reduced propositional logic programs) is not strong enough:
There exist reduced programs, which can obviously be further reduced. This means we
need stronger requirements.

32



4 Exact Extraction of Programs

Definition 4.16 (a-reduced programs)
An a-reduced program P is program with the following properties:

1. There are no clauses C; and Cy with C} # C5 in P where C] is of the form
P q, T, ... T, 81, ..., 8 and Cy is of the form p «— —q, tq, ... te, 27Uy, ..., "ug
with {r1,...,r.} C{t1,...,t.} and {s1,..., s} C {u,...,uq}.

2. There are no clauses C and Cy with C; # C5 in P where C] is of the form
P QT ..., Ta, ST, ..., 8y and Cy is of the form p «— q,t1, ..., t., 7uq, ..., "ug
with {ry,...,r.} C{t1,...,t.} and {s1,...,sp} T {w,...,uq}.

3. There are no clauses C and C5 with C # Cy in P, such that C subsumes C5.
4. No predicate symbol appears more than once in the body of a clause in P. 0

In this definition the third and fourth point are the same like for reduced programs.
The first and second point are new. These points can be used if there are two clauses
where one contains an atom p and the second one its negation. If this is the case and
additionally the body without p is a subset of the body of the other clause without —p
(or vice versa) then we know that the program can be further reduced. An example will
illustrate this.

Example 4.17
The most simple example is the one of Remark 4.13:

Plz{])}
Py ={p < p;

Here P, is not a-reduced. Let C be p «+ p and C5 be p «— —p. Then the first condition
of Definition 4.16 is (trivially) not fulfilled, because ) C (). P, should be reduced to P;.
Let us consider another example:

Py ={p < —p, -
p «— —|q7 —\7”}
Py ={p — —p,-;
p < p, g, T}
Again P is not a-reduced. Let Cy be p «— p,~q,—r and C5 be p « —p, —-r. Then
we have {-r} C {-r, —q} for the bodies of C; and Cy without p respectively —p. P; is
a-reduced and has the same operator. O

For completeness we now give the algorithm for constructing an a-reduced program.

Algorithm 4.18 (constructing an a-reduced program)
For an arbitrary propositional logic program P perform the following reduction steps as
long as possible:

33



4 Exact Extraction of Programs

1. If there are two clauses C; and C5 such that point 1 of Definition 4.16 is fulfilled,
then remove —¢ in the body of Cs.

2. If there are two clauses C'; and C5 such that point 2 of Definition 4.16 is fulfilled,
then remove ¢ in the body of Cs.

3. If there are clauses C and Cy with C} # Cs in P and C subsumes C5, then remove
Cs.

4. If a literal appears twice in the body of a clause, then remove it once.

5. If a predicate and its negation appear in the body of a clause, then remove this
Horn clause. 0O

If a program P was reduced to a program () by this algorithm we say "@) is an
a-reduced program of P".

Proposition 4.19 (correctness of reduction)
If @ is an a-reduced propositional logic program of P then Tp = Ty.

PROOF Only the first two points have to be proved. For the other points see the
proof of Proposition 4.6. We only show the first point, because the second point is
completely analogous. Let Cy € P be p «— q,r1,...,74,781,...,78, and Cy € P
be p «— =g, ty, ... te, Uy, ..., ug with {ry,...,re} C {t1,...,t.} and {s1,...,s} C
{uy,...,uq} as written in the definition of a-reduced programs. Let C} be the clause
p—ti,... te,ug, ..., —ug. We have to show that replacing Cy by Cf in P does not
change the operator. Because we have already shown point 3 of the reduction algorithm
we know, that we can add a the clause C3 of the form p «— q,t1,...,t., "ug, ..., Uy
to P without changing the Tp operator, because C'; subsumes (5. This means we have
Tp = Tpuicyy- But then the only difference between C; and Cs is that Cy contains
—q in its body and Cj3 contains ¢ in its body. Now Tycycsy (1) = Ticyy(I) is easy to
see. By replacing Cy and C3 by Cj it follows (Tp =)Truicy) = T(p\cy)ucy, because in a
program we can replace two clauses by an equivalent clause with respect to the immedi-
ate consequence operator without changing the immediate consequence operator of the
whole program. Thus we have shown that we can apply the first reduction rule without
changing the immediate consequence operator (by temporarily adding Cs). =

An interesting observation is that adding a clause C' to an a-reduced program and
then executing all possible reductions for C' and other clauses in the program does not
necessarily give an a-reduced program.

Example 4.20
Let C be p < p,—q,—r and P be the following program:

34



4 Exact Extraction of Programs

p < —p, g,
P <P, q,T
P p.q,

Reducing C and the first clause we get the new clause C' = p « —¢q, —r. C’ can be
reduced with the second clause and the result is C” = p < p, =q. C" cannot be reduced
with any other clause. This is the program we have obtained so far:

p e g,
p<Dp,q
P p,q, T

However this program is not a-reduced, because clause 3 of this program can be
further reduced (with clause 2). 0

Now a straightforward way for defining an extraction algorithm is to build up clauses
according to the construction in Proposition 4.14 and then apply the reduction algorithm
(for reducing space complexity it is also possible to add only some clauses, then reduce,
then add more clauses, reduce etc. ). This obviously yields a correct algorithm for
obtaining an a-reduced program by Proposition 4.14 and 4.19. The question is, if we
get the same properties like for the case of definite programs, i.e. a minimal program.
The following example shows that this is not always the case.

Example 4.21
The following programs have the same immediate consequence operator:

Pli PQZ P3I
D =p,r P p,r p—pr
p=pr p—=pr p—pr
b~ pq p—gqr p—qr

b "D, q

All of these programs are a-reduced. However we see that an a-reduced program is
not always minimal, because P is clearly larger than P,. Another observation is that
P53 can be easily reduced to P, by removing a clause. However this cannot be done by
a-reduction. Therefore we will introduce an even stronger reduction than a-reduction.q

Definition 4.22 (8-reduced programs)
A p-reduced program P is a program with the following properties:

1. There are no clauses C; and Cy with C; # C5 in P where (] is of the form
D q,T1,...,Tq,S1,...,18 and Cs is of the form p «— —q,t1, ..., t., 7uq, ..., " ug
with {r1,...,r.} C{t1,...,t.} and {s1,..., s} C {u,..., uq}.

35



4 Exact Extraction of Programs

2. There are no clauses €, and Cy with C; # C5 in P where (] is of the form
P TG, T1, .y Tq, 81, ..., S, and Cy is of the form p «— ¢, tq, ... te, 27Uy, ..., "ug
with {ry,...,re} C{t1,...,t.} and {s1,..., s} C {uq,...,uq}.

3. There is no clause C' € P with Tp\(cy; = Tp.

4. No predicate symbol appears more than once in the body of a clause in P. O

Compared to a-reduced programs only the third point has changed. It is now strictly
stronger by saying that not only clauses, which are subsumed by another clause in the
program are deleted, but every clause, which does not change the overall operator of the
program. The points 1,2 and 4 are like before.

Algorithm 4.18 can be changed for g-reduction, such that we get a correct algorithm.
The only new reduction step is the removal of clause C if point 3 of the above definition
is true, but this trivially does not change the immediate consequence operator of the
program. We can check point 3 by removing any clause C' in the program and then test
if Tp = Tp\(cy (which is of course decidable in propositional logic).

Is it now the case that we always get minimal programs? Unfortunately the answer
is no, as an example will show.

Example 4.23
P, and P, have the same immediate consequence operator:

P Ps:
p<—pr p < p,T
p<q,r p<gq,r
p<—Dp q p—p, T
D < 7q,r

The two programs above are (-reduced, but have different size. In this example we
see that the third and fourth clause of P, can be replaced by the third clause of P; in
this context. This leads to another reduction method. 0O

Definition 4.24 (vy-reduced programs)
A ~-reduced program P is a program with the following properties:

1. There are no clauses C; and Cy with C} # C5 in P where C} is of the form
P q, T, ... Tq, 81, .., 8, and Cy is of the form p «— —q,tq, ... te, 7uy, ..., "ug
with {ry,...,re} C{ts,...,t.} and {s1,..., s} C {uy,...,uq}.

2. There are no clauses C; and Cy with C; # (5 in P where C] is of the form
D ¢, T,y T, TS, - ., 18, and Cf is of the form p «— ¢, ty, ..., tc, 7ug, ..., Uy
with {r1,...,r.} C{t1,...,t.} and {s1,..., s} C {u,..., uq}.

3. There is no clause C' € P with Tp\(cy = Tp.

4. There are no clauses C; € P and Cy € P such that there exists a clause Cs with
TCl;Cz = TCs‘

36



4 Exact Extraction of Programs

5. No predicate symbol appears more than once in the body of a clause in P. O

Only one new point was added compared to -reduction.

Again one can find a correct reduction algorithm for «-reduction. An easy implemen-
tation can work this way: Remove two arbitrary clauses C and Cy (all combinations
have to be tested!) from the current program and add an arbitrary clause C5 (all pos-
sible clauses have to be tested!). If this does not change the consequence operator then
replace Cy and Cy by Cs. (Of course C3 should not contain a predicate symbol more
than once in its body otherwise there are infinitely many possibilites.)

Again we are interested wether y-reduction always gives always a minimal program?
Unfortunately the answer is no again. Although it becomes increasingly hard to find
counterexamples they do exist:

Example 4.25
P, and P, have the same immediate consequence operator:

P Ps:
p<<q,r,7s D < 7p,q,T
p < —q,r D —p,T, S
2 b<—Dp —q
Pp<=—D qSs p<—p7r,7Ss

p(— —|q’ -r

The two programs above are vy-reduced, but have different size. Note that clauses 1,
2 and 4 in P, can be replaced by clauses 1 and 3 of P;. We could now go on and include
the case that three clauses can be replaced by two clauses in a definition of d-reduction,
but we will stop now. Probably we would still be able to find a counterexample and
additionally ~-reduction is already computationally extremely expensive. 0

What we have done so far is to define three possible types of reduction. There is a
tradeoff, which has to be made between the power of reduction with respect to minimality
and the computing power necessary to compute the reduction. The good thing is that
different kinds of reduction can be combined. So it is of course possible to first use
a-reduction until a program is a-reduced, then use (-reduction until the program is
(G-reduced and finally use y-reduction.

As a final result for the reduction methods presented, we can give a straightforward
extraction algorithm for normal programs:

Algorithm 4.26 (extracting a reduced program from T’p)
Let Tp be an operator of an unknown propositional logic program P, Bp be the set of
all predicates in P and () be an empty set.

Construct the program () as defined in Proposition 4.14 and then perform a reduction
method on @ (which can be either a-, - or y-reduction). 0

Depending on wether a-, 8- or v-reduction is chosen one obtains a different algorithm,
but as explained above these can and should be combined. Please note that we did not
formally define # and v reduction, but gave the intuition in the explanations of the
corresponding definitions.

37



4 Exact Extraction of Programs

4.4.2 Pruning Possible Clause Bodies

As a base for further algorithms we look at a strategy of making the search for a minimal
program with a given operator more efficient. For this we will restrict the set of clause
bodies we consider for each predicate.

Definition 4.27 (allowed clause)
Let Tp be an immediate consequence operator, B = p1,...,pq, 7q1,..., g, be a clause
body and h be a predicate. We call B allowed with respect to h and Tp if it has the
following property:

For every interpretation I with {py,...,p.} € I and {q1,...,q} NI = 0 we have
h € Tp(I) and there is no allowed clause body B’ = ry,... 1., —ty,..., "ty for h with

B’ # B such that {ry,...,r.} C{p1,...,ta} and {t1,... . ta} CH{q1,. .., @} 0

The idea is that we do not want to allow clauses, which clearly lead to an incorrect Tp
operator and we do not want to allow clauses, for which a shorter allowed clause exists.
The intuition is of course that any minimal program can only consist of allowed clauses.
The following example will illustrate this construction:

Example 4.28 (pruning clause bodies)
We will use the operator of the programs in Example 4.21 and compute the allowed
clause bodies with respect to this operator and the predicate p. This is the operator:

Tp(0) = {p}
Tr({p}) =10
Tr({q}) = {p}
Tp({r}) =0

Tp({p,q}) =0

Tp({p.r}) = {p}

Tp({g,r}) = {p}
Tp({p,q;r}) = {p}

Now we want to reduce the number of possible clause bodies for clauses with head p.
Intuitively we do not want to consider clause bodies, which are "wrong". For example
the clause body p,q is "wrong", because adding the clause p «— p,q would lead to
p € Tp({p, q}), which is not correct. Furthermore we also do not want to consider clause
bodies for which shorter ones can be used, because we want to construct a minimal
program. For instance the clause body p, ¢, should not be used, because p,r can be
used as well and is shorter. We need to write down all possible clause bodies (of course
not considering those, which contain a predicate more than once) and check, which of
them can be pruned:

38



4 Exact Extraction of Programs

clause body | evaluation

0 False, p & Ti({p}).

D False, because p € Tp({p}).

q False, because p € Tp({p, q}).

r False, because p € Tp({r}).

—p False, because p € Tp({r}).

—q False, because p € Tp({p}).

—r False, because p € Tp({p}).

P, q False, because p € Tp({p, q}).

DT OK.

q,r OK.

P, ¢ False, because p € Tp({p}).

p, " False, because p € Tp({p}).

q,p OK.

q,—T False, because p € Tp({p, q}).

r,Tp False, because p € Tp({r}).

T, g False, because p € Tp({r}).

—p, —q False, because p € Tp{r}).

=p, " OK.

—q, T False, because p &€ Tp({p}).

D,q,T Not considered, because p,r is smaller.
D, q, T False, because p & Tp({p, q}).

P, G, T Not considered, because p, r is smaller.
-p,q,T Not considered, because g, r is smaller.
P, =g, T False, because p &€ Tp({p}).

=p, q, T Not considered, because —p, g is smaller.
—p, =g, T False, because p € Tp({r}).

=p, g, T Not considered, because —p, —r is smaller.

The left side of the table shows all possible clause bodies and the right side lists if
this clause body is allowed. If this is not the case the reason is given. We see that the
number of possible clause bodies is reduced from 27 to 4 in this case. O

4.4.3 A Greedy Algorithm

So far we have only considered algorithms, which build up a program P from Tp in
several steps by reducing a large correct program (top-down approach). Another possible
approach is to build up a program clause by clause to get closer to the desired operator.

The first thing we can do is to handle each predicate seperately. More precisely for
an arbitrary predicate p we create a subprogram, which only consists of clauses with
head p. Joining all subprograms gives us the overall program. This construction can
be done, because of the definition of the immediate consequence operator. For a given
predicate h, an immediate consequence operator Tp» and an interpretation I we know
that h € Tp(I) only depends on clauses with head h. The following definition introduces
an operator, where the resulting interpretation is restricted to one predicate:

39



4 Exact Extraction of Programs

Definition 4.29
Let ¢ € Bp be a predicate and T be an immediate consequence operator. We define a
function T3 : 287 — 2Br:

q _ @ if gTP(I)
0 ={ ty irs e ’

Let us see how we use this definition: Let Bp = {qi, ..., ¢mn} be the set of all predicates
and Tp a given operator. Now we try to find subprograms @); for each predicate ¢; such
that T, = T#. If we construct the union @ = QU- - -UQ,, of such programs we obtain
a program with operator Tp. This is because for an arbitrary predicate » we have the
following arguments: r € Tp([) if and only if r € TF (1) if and only if r € Ty, .

For the bottom-up approach of creating a program we define a score function. This
function takes as arguments a clause and the program we have constructed so far and
returns a value. This definition only makes sense if we use it for allowed clauses. For an
allowed clause there is a set of interpretations, which does not yet behave like the desired
operator with respect to a certain predicate and the program we have constructed so
far, but would behave correctly if we add the clause to the constructed program. The
more such interpretations exist the higher the score should be. The intuitive meaning
will later become clearer in Example 4.32 in this section.

Definition 4.30 (score)
Let Bp be a set of predicates. The score of a clause with respect to a program @) is
defined as follows:

score(h <« D1, ... Pmy G5 - -, Gn; Q) =
HI|1C2% and {p,...,p,} CTand {qi,...,q} NI =0and h & To(I)} o

We can now give a greedy algorithm. It creates subprograms for each predicate by
iteratively adding the clauses with the highest score. If there are several clauses with
the highest score we prefer those with less literals, because we want to construct a small
program.

Algorithm 4.31 (Greedy Extraction Algorithm)
Let Tp and Bp = {q, ..., ¢n} be the input of the algorithm.

Initialize: Q = ()
Foreach predicate ¢; € Bp:
construct the set .S; of allowed clause bodies for g;
initialize: Q; = ()
repeat:
Determine a clause C of the form h <+ B with B € S; with the highest
score with respect to Q;. If several clauses have the highest score, then
choose one with the smallest number of literals.

Qi = Q;U{C}
until Tp, = T%
Q=QUQ; O

40



Example 4.32

Let the operator shown below on the left side be the input of the extraction algorithm.

4 Exact Extraction of Programs

From this operator we can compute the set S of allowed clause bodies:

S ={p,r;—p, o, s q, TP, T q, T, TS D, ¢, 8D, S, G5 G, S, D LT, S )

The two tables below the operator show two different runs of the algorithm. In each
step the score for the allowed clauses, which are not already in the constructed program,
is given. (The score of the clause which is added to the constructed program @ is in
boldface.) As an example the score for p,q, s in step I of the first run is 2, because
p € Tp(p,q) and p € Tp(p,q,7). It goes down to 1 in the second step, because we have
@ = {p,r} and therefore p € T(p, q,r) at this point. Intuitively this means we would
only gain one additional interpretation by adding p < p, ¢, —s. The table on the right

summarizes the interpretations gained by the two different runs in each step.

Tp(0) = {pr}-~_
Tr({p}) =0 N
Tr({a}) ={p}-~_
Tp({r}) =10 AN interpretation | run 1 | run 2
Tp({r}) =0 N I |11
T 11 11
To({p.q}) = {p}=-=-—____ 10
--{p,q} v IV
Tr({p,r}) ={p}------___ ~{pr) I I
Tp({p,s}) = {p}--------- ~>{p, s} \Y% \Y%
Tp({q,r}) =0 /,/—»{q, s} II IT1
Te({g,5}) = {p}---~ /*}pa%@ Lol
— // - p7 7’, S
. Telrsh) =0 7 s} VI |1
P({p7Q7T})_{p}— // ////..){p7q77~’8} I I
TP<{p7q> 5}) =0 P //
7 /
TP({p7 T, S}) = {p}—/ /////
Tr({q,r,s}) ={p}--",
TP({p7 q,7, S}) = {p}—/
clause body | I IT III IV V VI clause body | I II III IV V
DT 4 D, 4
-p, r, S 2 2 1 -p, r, S 2 2
q, p, T 2 2 q,—p, —r 2 2 1 0 0
q,—7T, S 2 2 1 1 q,—r, s 2 2 1 1
D, q, S 21 1 1 0 0 D, q, S 2 1 1 1 0
D, S, q 2 1 1 1 1 P, 8, q 2 1 1 1 1
q,5,p 2 2 1 1 1 1 q,8,p 2 2 2
q,7, S 2 1 1 1 1 1 q,7, S 2 1 1 0 O

41



4 Exact Extraction of Programs

The example is constructed such that there are two different runs of the algorithm,
which return programs with different size for the same operator. The first run produced
a program with six clauses and 17 literals. The second run produces a program with five
clauses and 14 literals. This shows that this algorithm does not always return a minimal
program, which is an expected result, because the algorithm is greedy, i.e. it always
chooses the clause, which seems to be the best according to the score heuristic, without
looking at the effects of this decision. We also see that the algorithm is not deterministic,
because there may be several clauses with the highest score and the lowest number of
literals (e.g. in step III of run 1). 0

As a sidenote the algorithm can easily be extended to construct programs, which
approximate the correct operator. As a stopping criterion for creating a subprogram the
algorithm above requires 7% = Tp,. Instead of this strict criterion one could stop if all
the remaining clauses only have a small score (e.g. the maximum score is 1) or if 7%
and Ty, are equal for a certain percentage (e.g. 95%) of interpretations. As the initial
motivation is to extract knowledge from neural networks it may be desirable to extract
rules, which do not overfit, but are shorter and hence more understandable.

4.4.4 An Intelligent Program Search Algorithm

So far we could not guarantee minimality of the resulting program for any of the extrac-
tion algorithms. One approach to realize this is to use a program search algorithm. This
means we search all possible programs with increasing size and stop if we have found a
program, which has the desired operator. This seems to be inefficient, but there are two
points, which motivate the specification of such an algorithm:

1. The previous algorithms did not guarantee that a minimal program is extracted.
An important goal of this paper is to present such an algorithm as it was done for
definite propositional logic programs. If the (probably) most efficient way to do
this is a program search algorithm, then it should be specified.

2. There are ways to make program search more efficient.
There are three things which will be done to make the search more efficiency:

1. We will only search programs with clauses, which do not contain predicates more
than once in their body. We can do this, because a minimal program never contains
such clauses. (see Algorithm 4.5 and Proposition 4.6)

2. We create subprograms for every predicate seperately. This is exactly the same
approach like in the greedy algorithm. Of course if all such subprograms are
minimal then the resulting program is also minimal. Why does this make program
search much more efficient? The reason is that the complexity now depends on
the size of the minimal subprogram of the most complex predicate instead of the
size of the whole minimal program.

42



4 Exact Extraction of Programs

3. Again we only consider allowed clause bodies when constructing programs. We can
do this, because we have seen every minimal program can only consist of clauses
with allowed clause bodies.

Now we will give the program search algorithm. It essentially uses the techniques of
the greedy algorithm, but instead of using a heuristic (the score function) to add clauses
to subprograms it performs a full program search.

Algorithm 4.33 (program search algorithm)
Let Tp and Bp = {q1,- .., qn} be the input of the algorithm.

Initialize: Q = ()
Foreach predicate ¢; € Bp:
construct the set S; of allowed clause bodies for g;
initialize: n; =0
repeat:
For every set (ay,...,a,) with ¥7_, ja; = n:
Construct programs (); which have a; clauses with j literals (0 < j <n),
where each clause has head ¢; and its body is an element of S;, until a
program with T = Tp, is found or all possible programs were constructed.
increment n;
until there is a program Q; with T = Ty,
Q=0QUQ; O

The sum X7_,ja; = n in the algorithm is only for iterating through all possibilities,
how a program with n literals can be build. For instance if n = 6 there can be one clause
with six literals, two clauses with three literals, one clause with four literals and another
with two literals etc. Of course only those a; (1 <i < n) can have a value greater than
0, for which clauses with allowed bodies of length ¢ —1 exist ("—1", because of the head).

Proposition 4.34
Let Tp be the input for Algorithm 4.33. Then its ouput Q) is a minimal propositional
logic program with Tp = Ty.

PROOF This directly follows from the construction of the algorithm and the explanations
given above. n

The next example describes very briefly how the algorithm works.

Example 4.35
Assume the Tp operator of Example 4.28 is given as input to the algorithm:

43



4 Exact Extraction of Programs

Tp(0) =
Tp({p}) =
Tr({q}

Tr({p, q}
Tp({p,r}

{r}
0
{r}
0
0
= {p}

Tr({q,7}) = {p}
Tp({p,q,7}) = {p}

For the predicates ¢ and r there are no allowed clauses, so the algorithm would con-
struct empty subprograms for those predicates. For the predicate p we computed the
allowed clauses: S = {p,r;q,7;q,—p; —p,—r}. The algorithm now tries to build a sub-
program for p with an increasing number n of literals. For n = 0 this obviously fails. If 3
is not a divider of n this fails, too, because every element of S has exactly two elements,
so only clauses with 3 literals are possible. For n = 3 the algorithm tests every single
clause with bodies in S. For n = 6 the algorithm tests every combination of two clauses
with bodies in S. All these combiations do not give the desired operator Tp as one can
manually verify. For n = 9 the algorithm will be succesful, because we have seen that
there are programs with this size and operator 75 in Example 4.21. O

) =
) =
)=
) =
)
)

Again the algorithm can easily be extended to create programs, which approximate
the correct operator. Instead of the stopping criterion T = Ty, one can require that
the operators are equal only for a certain percentage of interpretations.

4.4.5 A Result Regarding Minimal Programs

The previous algorithms have shown that extracting normal programs is a lot harder
than extracting definite programs. The next proposition gives an intuition why this is
the case. We will show that there is in general not a unique minimal program. As a
counterexample we use the same operator like in the Examples 4.21, 4.28 and 4.35.

Proposition 4.36
There can be more than one minimal propositional logic program with a given imme-
diate consequence operator.

PROOF The claim is that for the programs P, and P, in Example 4.21 there is no
smaller program, i.e. a program with less literals, with the same immediate consequence
operator. To prove this we have to show that there is no smaller program having the
operator Tp, (= Tp,). (We will write Tp instead of Tp, or T, from now on.) In Example

44



4 Exact Extraction of Programs

4.28 we have computed the set S of allowed clause bodies for the predicate p (it is
obvious that a minimal program with this operator consists only of clauses with head
p): S={p,r;q,7;q,—p;—p,—r}. In particular there is no clause body with one or three
literals. This means for a program to be smaller than P, or P,, which have the size of
nine literals, it must have one or two clauses where each clause has exactly three literals
(exactly two literals in the body).

We further see that a program must have the clause p < —p, =r, because it is the only
one for which we get Tp(()) = {p}. We also need the clause p < p, r, because it is the only
one which gives us Tp({p,r}) = {p}. But for the program Q = {p < —p,—r;p < p,r}
we have p & Tp({¢,7}). This means that there is no program with two or less clauses
with operator Tp, which completes the proof. n

4.5 Conclusions

We have given algorithms for creating a program from operators of definite and normal
programs. The extraction algorithm for definite programs (Algorithm 4.7) had a lot of
nice properties: It returns a correct and reduced program. Moreover there is always
exactly one reduced program with minimal size for each operator.

As usual in logic programming most of the good properties for definite programs
are lost for normal programs. We could prove that there is in general not only one
program with minimal size for a given operator. We evaluated several different reduction
strategies, which work similar like the easier reduction for definite programs. However
while these approaches work, they cannot guarantee that we get a minimal program. To
make this possible we gave a program search algorithm (Algorithm 4.33), which has this
property, but is slow if there are predicates, which need complex subprograms. For the
case where a minimality guarantee is not needed we gave a greedy algorithm (Algorithm
4.31), which builds up a program by always adding the best possible clause according to
the score heuristic. The greedy algorithm as well as the program search algorithm can
also extract programs, which approximate the correct operator, if this is desired.

Even with their negative properties normal programs are usually more desirable in the
context of network extraction, because we have shown that there exist normal programs
for arbitrary mappings from (finite) interpretations to (finite) interpretations, which
means we can extract a program from every network.

The complexity of the given algorithms is not always easy to estimate. All the al-
gorithms need the whole consequence operator as input, so they are exponential with
respect to the number |Bp| of predicates, because there exist 2/27! interpretations. The
algorithm for extracting definite programs only performs a computationally inexpen-
sive check for each such interpretation. For extracting normal programs the complexity
is higher. The algorithm working with reductions (Algorithm 4.26) needs to do a lot
more work for each interpretation depending on the type of reduction used (-, - or
v-reduction). For - and ~-reduction the complexity depends strongly on the number of
possible clauses, because it is necessary to check wether one (respectively two) clauses
can be replaced by an arbitrary possible clause. The complexity of the pruning tech-
nique presented in Section 4.4.2 also depends on the number of possible clauses (and is

45



4 Exact Extraction of Programs

therefore exponential with respect to the number of predicates), because for each pos-
sible clause we have to decide wether it is allowed or not. This decision itself involves
searching through the whole operator in the worst case, so the worst case complexity for
computing all allowed clauses is 2187l x 2/BPI The greedy algorithm and the program
search algorithm roughly depend on the number of allowed clauses and the minimal size
of the largest subprogram. The author wants to emphasize that better approximations
of the complexity and suitability of the presented algorithms will need further more
detailed investigations (ideally combined with practical tests).

How do the algorithms in this section relate to the ILP techniques used in Section 37
Of course the similarity is that both have the same goal to extract a logic program from
a network representing an immediate consequence operator. However there are some
important differences. The first one is that ILP techniques are suited for handling first
order logic while the algorithms in this section can only handle propositional logic. An-
other difference is that for the ILP techniques we usually only gave some pairs (I, Tp(I))
for generating examples, while the algorithms in this section usually consider the whole
consequence operator as given. The reason for this is that the algorithms in this section
are correct with respect to the operator of the generated program, i.e. the given operator
and the operator of the generated program are equal. The programs induced by ILP
techniques do not have this property, but instead are correct (as defined in Definition
3.3) with respect to a given set of examples.

46



References

References

[Apt97|
[BHO4]

[BHHO4]

[dGBGO1]

[HK94]

[HKS99)]

[Mah83]

[MBSS]

[MF]

IMF92|

[MR94]

[Mug01]

K.R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.

S. Bader and P. Hitzler. Logic programs, iterated function systems, and
recurrent radial basis function networks. Journal of Applied Logic, 2(3):273—
300, 2004.

S. Bader, P. Hitzler, and S. Hoélldobler. The integration of connectionism
and first-order knowledge representation and reasoning as a challenge for
artificial intelligence. In L. Li and K.K. Yen, editors, Proceedings of the
Third International Conference on Information, pages 22-33, Tokyo, Japan,
November/December 2004. International Information Institute.

A.S. d’Avila Garcez, K. Broda, and D.M. Gabbay. Symbolic knowledge
extraction from trained neural networks: A sound approach. Artificial In-
telligence, 125:155-207, 2001.

S. Holldobler and Y. Kalinke. Towards a new massively parallel computa-
tional model for logic programming. In Proceedings of the ECAI9 Workshop
on Combining Symbolic and Connectionist Processing, pages 68-77. ECCAL,
1994.

S. Holldobler, Y. Kalinke, and H.-P. Stérr. Approximating the semantics of
logic programs by recurrent neural networks. Applied Intelligence, 11:45-58,
1999.

M. J. Maher. Equivalences of logic programs. In Jack Minker, editor, Foun-
dations of Deductive Databases and Logic Programming, pages 627-658. Mor-
gan Kaufmann, Los Altos, CA, 1988.

S. Muggleton and W. Buntine. Machine invention of first order predicates
by inverting resolution. In MLSS8, pages 339-351. MK, 1988.

S. Muggleton and J. Firth. CProgol 4.4: a tutorial introduction. Department
of Computer Science, University of York, United Kingdom.

S. Muggleton and C. Feng. Efficient induction in logic programs. In S. Mug-
gleton, editor, ILP, pages 281-298. AP, 1992.

S.H. Muggleton and L. De Raedt. Inductive logic programming: Theory and
methods. Journal of Logic Programming, 19,20:629-679, 1994.

S.H. Muggleton. Learning from positive data. Machine Learning, 2001.
Accepted subject to revision.

47



References

[NCAWO97] S.H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Pro-

1QCJ93]

[Qui92|

IRNO3]

[Roj02]
[Shadl|

gramming, volume 1228 of Lecture Notes in Artificial Intelligence. Springer,
1997.

J.R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report. In Ma-
chine Learning: ECML-93, European Conference on Machine Learning, Pro-
ceedings, volume 667, pages 3-20. Springer-Verlag, 1993.

J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1992.

S. Russel and P. Norvig. Artificial Intelligence - A Modern Approach. Pren-
tice Hall, 2nd edition, 2003.

R. Rojas. Neural networks: a systematic introduction. Springer, 2002.

E.Y. Shapiro. Inductive inference of theories from facts. In J.L. Lassez
and G.D. Plotkin, editors, Computational Logic: Essays in Honor of Alan
Robinson, pages 199-255. MIT, 1991.

48



Statement of Academic Honesty

Hereby I declare that this is my work and that I did not use any other sources than the
onces cited.

49



